Order = 64561751654400 =
217.39.52.7.11.13.
Mult = 6.
Out = 2.
Porting notes
Porting incomplete.Standard generators
Standard generators of Fi22 are a, b where a is in class 2A, b has order 13, ab has order 11 and ababababbababbabb has order 12.
Standard generators of 2.Fi22 are preimages A, B where B has order 13 and AB has order 11.
Standard generators of 3.Fi22 are preimages A, B where A has order 2 and B has order 13.
Standard generators of Fi22:2 are c, d where c is in class 2A, d is in class 18E and cd has order 42.
Standard generators of 2.Fi22:2 are preimages C, D where CDCDCDCDCDD has order 30. Alternatively: D is in class +18E and CD is in class +42A.
Standard generators of 3.Fi22:2 are preimages C, D where C has order 2.
Standard generators of 6.Fi22 are A, B where A is in class ...? and B is in class ...?.
Black box algorithms
Finding generators
Group | Algorithm | File |
---|---|---|
Fi22 | Download | |
Fi22:2 | Download |
Checking generators (semi-presentations)
Group | Semi-presentation | File |
---|---|---|
Fi22 | 〈〈 a, b | o(a) = 2, o(b) = 13, o(ab) = 11, o(ababababbababbabb) = 12, o(z) = 30, o(az15) = 3; z = ababbabb 〉〉 | Download |
Fi22:2 | 〈〈 c, d | o(c) = 2, o(d) = 18, o(cd) = 42, o(z) = 22, o(cz11) = 3, o((d9)cddd(cd)21) = 3; z = cdcd5cd4 〉〉 | Download |
Presentations
Group | Presentation | Link |
---|---|---|
Fi22 | 〈 a, b | a2 = b13 = (ab)11 = (ab2)21 = [a, b]3 = [a, b2]3 = [a, b3]3 = [a, b4]2 = [a, b5]3 = [a, bab2]3 = [a, b−1ab−2]2 = [a, bab5]2 = [a, b2ab5]2 = 1 〉 | Details |
2.Fi22 | 〈 A, B | A2 = B13 = (AB)11 = [A,B]3 = [A,B2]3 = [A,B3]3 = [A,B4]2 = [A,B5]3 = [A,BAB2]3 = [A,B−1AB−2]2, = [A,BAB5]2, = [A,B−1AB−5]3 = [A,B2AB5]2 = 1 〉 | Details |
Fi22:2 | 〈 c, d | c2 = d18 = [c, d]3 = [c, d2]3 = [c, d3]3 = [c, d4]3 = [c, d5]3 = [c, d6]2 = [c, d7]2 = [c, d8]3 = (cd9)4 = [c, dcdcd−2cd] = [c, d2cd2cd−4cd2] = ((cd3)4cd−4)2 = (cd4cd5cd5)5 = (cdcd−3)8 = 1 〉 | Details |
3.Fi22:2 | 〈 C, D | C2 = D18 = [C,D6]2 = [C,D7]2 = (CD9)4 = [C,D]3 = [C,D2]3 = [C,D3]3 = [C,D4]3 = [C,D5]3 = [C,D8]3 = [C,DCDCD−2CD] = [C,D2CD2CD−4CD2] = ((CD3)4CD−4)2 = (CD4CD5CD5)5 = 1 〉 | Details |
Representations
Representations of Fi22
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 3510 Std Details 14080 b Std Details 61776 Std Details 142155 Std Details 694980 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 0 Z 78 Std Details Char Ring Dimension ID Generators Description Link 2 GF(2) 78 Std Details 2 GF(2) 350 Std Details 2 GF(2) 572 Std Details Char Ring Dimension ID Generators Description Link 3 GF(3) 77 Std Details 3 GF(3) 351 Std Details 3 GF(3) 924 Std Details Char Ring Dimension ID Generators Description Link 5 GF(5) 78 Std Details 5 GF(5) 428 Std Details Char Ring Dimension ID Generators Description Link 7 GF(7) 78 Std Details 7 GF(7) 429 Std Details Char Ring Dimension ID Generators Description Link 11 GF(11) 78 Std Details 11 GF(11) 429 Std Details Char Ring Dimension ID Generators Description Link 13 GF(13) 78 Std Details 13 GF(13) 429 Std Details
Representations of 2.Fi22
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 28160 Std Details 123552 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 3 GF(3) 176 a Std Details 5 GF(5) 352 Std Details 7 GF(7) 352 Std Details 11 GF(11) 352 Std Details 13 GF(13) 352 Std Details
Representations of 3.Fi22
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 185328 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 2 GF(4) 27 a Std Details 7 GF(7) 351 a Std Details
Representations of Fi22:2
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 3510 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 0 Z 78 Std Details Char Ring Dimension ID Generators Description Link 2 GF(2) 78 Std Details 2 GF(2) 350 Std Details 2 GF(2) 572 Std Details 2 GF(2) 1352 Std Details Char Ring Dimension ID Generators Description Link 3 GF(3) 77 a Std Details 3 GF(3) 351 Std Details 3 GF(3) 924 Std Details Char Ring Dimension ID Generators Description Link 5 GF(5) 78 a Std Details 5 GF(5) 428 a Std Details Char Ring Dimension ID Generators Description Link 7 GF(7) 78 a Std Details 7 GF(7) 429 a Std Details Char Ring Dimension ID Generators Description Link 11 GF(11) 78 a Std Details 11 GF(11) 429 a Std Details Char Ring Dimension ID Generators Description Link 13 GF(13) 78 a Std Details 13 GF(13) 429 a Std Details
Representations of 2.Fi22:2
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 56320 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 3 GF(3) 352 Std Details
Representations of 3.Fi22:2
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 185328 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 2 GF(2) 54 Std Details 7 GF(7) 702 Std Details
Representations of 6.Fi22
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 370656 Std Details
Maximal subgroups
Maximal subgroups of Fi22
Subgroup | Order | Index | Programs/reps |
---|---|---|---|
2.U6(2) | 18 393 661 440 | 3 510 | Program: Generators |
O7(3) | 4 585 351 680 | 14 080 | Program: Generators |
O7(3) | 4 585 351 680 | 14 080 | Program: Generators Program: Generators |
O8+(2):S3 | 1 045 094 400 | 61 776 | Program: Generators |
210:M22 | 454 164 480 | 142 155 | Program: Generators |
26:S6(2) | 92 897 280 | 694 980 | Program: Generators |
(2 × 21+8):(U4(2):2) = 2.21+8:(U4(2):2) | 53 084 160 | 1 216 215 | Program: Generators |
U4(3):2 × S3 | 39 191 040 | 1 647 360 | Program: Generators |
2F4(2)' | 17 971 200 | 3 592 512 | Program: Generators |
25+8:(S3 × A6) | 17 694 720 | 3 648 645 | Program: Generators |
31+6:23+4:32:2 | 5 038 848 | 12 812 800 | Program: Generators |
S10 | 3 628 800 | 17 791 488 | Program: Generators |
S10 | 3 628 800 | 17 791 488 | Program: Generators Program: Generators |
M12 | 95 040 | 679 311 360 | Program: Generators |
Maximal subgroups of Fi22:2
Subgroup | Order | Index | Programs/reps |
---|---|---|---|
Fi22 | 64 561 751 654 400 | 2 | Program: Generators |
2.U6(2).2 | 36 787 322 880 | 3 510 | Program: Generators Program: Generators |
O8+(2):S3 × 2 | 2 090 188 800 | 61 776 | Program: Generators |
210:M22:2 | 908 328 960 | 142 155 | Program: Generators |
27:S6(2) | 185 794 560 | 694 980 | Program: Generators |
(2 × 21+8:U4(2):2):2 | 106 168 320 | 1 216 215 | Program: Generators |
U4(3).2.2 × S3 | 78 382 080 | 1 647 360 | Program: Generators |
2F4(2) | 35 742 400 | 3 612 614 | Program: Generators |
25+8:(S3 × S6) | 35 389 440 | 3 648 645 | Program: Generators |
35:(2 × U4(2):2) | 25 194 240 | 5 125 120 | Program: Generators |
31+6:23+4:32.2.2 | 10 077 696 | 12 812 800 | Program: Generators |
G2(3):2 | 8 491 392 | 15 206 400 | Program: Generators |
M12:2 | 7 257 600 | 17 791 488 | Program: Generators |
Conjugacy classes
Conjugacy classes of Fi22
Conjugacy class | Centraliser order | Power up | Class rep(s) |
---|---|---|---|
1A | 64 561 751 654 400 | ||
2A | 18 393 661 440 | 6A 6B 6E 10A 14A 18A 18B 18C 22A 22B 30A | |
2B | 53 084 160 | 4A 4B 4C 4E 6C 6D 6I 8A 8B 8C 10B 12A 12B 12C 12D 12H 12I 12J 16A 16B 18D 20A 24A 24B | |
2C | 1 769 472 | 4D 6F 6G 6H 6J 6K 8D 12E 12F 12G 12K | |
3A | 19 595 520 | 6A 6D 6F 12B 12C 12D 12I 15A 21A 24A 24B 30A | |
3B | 2 519 424 | 6B 6C 6G 9A 9B 12A 12E 12F 12H 18A 18B 18C 18D | |
3C | 139 968 | 6E 6H 6I 6J 12G 12J | |
3D | 17 496 | 6K 9C 12K | |
4A | 110 592 | 8A 8B 12A 12B 12C 24A 24B | |
4B | 46 080 | 12D 12J 20A | |
4C | 12 288 | 8C 12H 16A 16B | |
4D | 4 608 | 8D 12E 12F 12G 12K | |
4E | 3 072 | 12I | |
5A | 600 | 10A 10B 15A 20A 30A | |
6A | 155 520 | 30A | |
6B | 93 312 | 18A 18B 18C | |
6C | 10 368 | 12A 12H 18D | |
6D | 6 912 | 12B 12C 12D 12I 24A 24B | |
6E | 3 888 |
Omitted
owing to
length. |
|
6F | 3 456 |
Omitted
owing to
length. |
|
6G | 3 456 | 12E 12F | |
6H | 1 728 | 12G | |
6I | 864 | 12J | |
6J | 432 |
Omitted
owing to
length. |
|
6K | 216 | 12K | |
7A | 42 | 14A 21A | |
8A | 384 | 24B | |
8B | 384 | 24A | |
8C | 128 | 16A 16B | |
8D | 32 |
abbabababbbabababbbabbb |
|
9A | 324 | 18A 18B 18D | |
9B | 162 | 18C | |
9C | 27 |
abbb |
|
10A | 60 | 30A | |
10B | 40 | 20A | |
11A | 22 | 11B2 22A 22B | |
11B | 22 | 11A2 22A 22B | |
12A | 864 |
Omitted
owing to
length. |
|
12B | 576 | 24A 24B | |
12C | 576 |
ababbbabababbbabababbbabbbabbabababbbabbbabbbabababbbabbb |
|
12D | 288 |
ababbbabababbbabababbbabbbababbbbabababbb |
|
12E | 144 |
ababbbabbbabababbbabbbbabababbb |
|
12F | 144 |
abababbbabbbabababbbabababbbabbbbabababbbabbb |
|
12G | 144 |
babababbbabababbbabababbbabbbabbabababbbabbb |
|
12H | 96 |
babababbbbabababbbabababbbabababbbabbbabbabababbbabbb |
|
12I | 96 |
babababbbbabababbbabababbbabababbbabbbabbabababbbabbbab |
|
12J | 72 |
babababbbabababbbabababbbabbbabbabababbbabbbabbb |
|
12K | 36 |
abababbbabababbbabbbababbb |
|
13A | 13 | 13B2 | |
13B | 13 | 13A2 | |
14A | 14 |
babababbbabbb |
|
15A | 30 | 30A | |
16A | 32 | 16B5 | |
16B | 32 | 16A5 | |
18A | 108 | 18B5 | |
18B | 108 | 18A5 | |
18C | 54 |
abbbabababbbabbb |
|
18D | 36 |
abbabababbbabbb |
|
20A | 20 |
abababbbabbb |
|
21A | 21 | abb |
|
22A | 22 | 22B7 | |
22B | 22 | 22A7 | |
24A | 48 |
abababbbabababbbabbbabbabababbbabbb |
|
24B | 48 |
abababbb |
|
30A | 30 |
ababbb |
|
13A-B | aab |
||
16A-B |
babababbb |
||
18A-B |
ababababbb |
||
22A-B |
abababbbabababbbabbb |
Download words for class representatives.
Conjugacy classes of Fi22:2
Conjugacy class | Centraliser order | Power up | Class rep(s) |
---|---|---|---|
1A | 129 123 503 308 800 | ||
2A | 36 787 322 880 | 6A 6B 6E 10A 14A 18A 18B 22A 30A | |
2B | 106 168 320 | 4A 4A 4B 4B 4C 4C 4E 4E 6C 6D 6I 8A 8B 8C 10B 12A 12B 12C 12D 12G 12H 12I 16A 18C 20A 24A 24B 4F 4G 4H 4I 8E 8F 8G 12K 12L 12M 12N 12O 12P 12Q 12R 12S 16B 20B 24C 24D 24E 24F 36A | |
2C | 3 538 944 | 4D 4D 6F 6G 6H 6J 6K 8D 12E 12F 12J 4J 8H 12T 24G | |
3A | 39 191 040 | 6A 6A 6D 6F 12B 12C 12D 12H 15A 21A 24A 24B 30A 6L 6M 6O 6Q 12K 12M 12O 12P 24C 24D 30B 30C 42A | |
3B | 5 038 848 | 6B 6C 6G 9A 9B 12A 12E 12G 18A 18B 18C 6N 6R 12L 12Q 18D 18E 18F 24E 24F 36A | |
3C | 279 936 | 6E 6H 6I 6J 12F 12I 6P 6U 6V 12N 12R 12S 24G | |
3D | 34 992 | 6K 9C 12J 6S 6T 12T 18G | |
4A | 221 184 | 8A 8B 12A 12B 12C 24A 24B 8E 8F 24C 24D | |
4B | 92 160 | 12D 12I 20A | |
4C | 24 576 | 8C 12G 16A 8G 16B 24E 24F | |
4D | 9 216 | 8D 12E 12F 12J 8H 24G | |
4E | 6 144 | 12H | |
5A | 1 200 | 10A 10B 15A 20A 30A 10C 10D 10E 20B 30B 30C | |
6A | 311 040 | 30A | |
6B | 186 624 | 18A 18B | |
6C | 20 736 | 12A 12G 18C 12L 12Q 24E 24F 36A | |
6D | 13 824 | 12B 12C 12D 12H 24A 24B 12K 12M 12O 12P 24C 24D | |
6E | 7 776 | ||
6F | 6 912 | ||
6G | 6 912 | 12E | |
6H | 3 456 | 12F 24G | |
6I | 1 728 | 12I 12N 12R 12S | |
6J | 864 | ||
6K | 432 | 12J 12T | |
7A | 84 | 14A 21A 14B 14C 42A | |
8A | 768 | 24B | |
8B | 768 | 24A | |
8C | 256 | 16A 16B | |
8D | 64 | ||
9A | 648 | 18A 18C 18D 36A | |
9B | 324 | 18B 18E 18F | |
9C | 54 | 18G | |
10A | 120 | 30A | |
10B | 80 | 20A 20B | |
11A | 22 | 22A | |
12A | 1 728 | ||
12B | 1 152 | 24A 24B 24C 24D | |
12C | 1 152 | ||
12D | 576 | ||
12E | 144 | ||
12F | 288 | 24G | |
12G | 192 | 24E 24F | |
12H | 192 | ||
12I | 144 | ||
12J | 72 | ||
13A | 13 | ||
14A | 28 | ||
15A | 60 | 30A 30B 30C | |
16A | 32 | ||
18A | 108 | ||
18B | 108 | ||
18C | 72 | 36A | |
20A | 40 | ||
21A | 42 | 42A | |
22A | 22 | ||
24A | 96 | ||
24B | 96 | ||
30A | 60 | ||
2D | 2 090 188 800 | 6L 6M 6N 6P 6S 10C 14B 18D 18E 30B 42A | |
2E | 6 635 520 | 6Q 6T 6U 10E 18G | |
2F | 5 806 080 | 6O 6R 6V 10D 14C 18F 30C | |
4F | 1 327 104 | 12K 12L 12M 12N 36A | |
4G | 245 760 | 12O 20B | |
4H | 18 432 | 12P 12Q 12R | |
4I | 12 288 | 12S | |
4J | 3 072 | 12T | |
6L | 311 040 | 30B | |
6M | 72 576 | 42A | |
6N | 23 328 | 18D 18E | |
6O | 8 640 | 30C | |
6P | 7 776 | ||
6Q | 6 912 | ||
6R | 2 592 | 18F | |
6S | 1 296 | ||
6T | 1 296 | 18G | |
6U | 864 | ||
6V | 432 | ||
8E | 768 | 24C | |
8F | 768 | 24D | |
8G | 768 | 24E 24F | |
8H | 192 | 24G | |
10C | 1 200 | 30B | |
10D | 120 | 30C | |
10E | 80 | ||
12K | 6 912 | ||
12L | 2 592 | 36A | |
12M | 1 152 | ||
12N | 864 | ||
12O | 768 | ||
12P | 576 | ||
12Q | 288 | ||
12R | 144 | ||
12S | 96 | ||
12T | 24 | ||
14B | 84 | 42A | |
14C | 28 | ||
16B | 32 | ||
18D | 108 | ||
18E | 108 | ||
18F | 36 | ||
18G | 18 | ||
20B | 40 | ||
24C | 96 | ||
24D | 96 | ||
24E | 48 | 24F5 | |
24F | 48 | 24E5 | |
24G | 24 | ||
30B | 60 | ||
30C | 60 | ||
36A | 36 | ||
42A | 42 |
Download words (if any exist) for class representatives.