Order = 1451520 = 29.34.5.7.
Mult = 2.
Out = 1.
Porting notes
Porting incomplete.Standard generators
Standard generators of S6(2) are a, b where a is in class 2A, b has order 7 and ab has order 9.
Standard generators of 2.S6(2) are preimages A, B where B has order 7 and AB has order 9.
Black box algorithms
Checking generators (semi-presentations)
Group | Semi-presentation | File |
---|---|---|
S6(2) | 〈〈 a, b | some conditions 〉〉 | Download |
Presentations
Group | Presentation | Link |
---|---|---|
S6(2) | 〈 a, b | a2 = b7 = (ab)9 = (ab2)12 = [a, b]3 = [a, b2]2 = 1 〉 | Details |
2.S6(2) | 〈 A, B | A2 = [A2, B] = B7 = (AB)9 = (AB2)12 = [A, BABAB]2A−2 = [A, B]3B−2 = [A, B2]2B−2 = 1 〉 | Details |
(S6(2)) A shorter, and more coset enumeration friendly, presentation may be obtained by replacing (ab2)12 = 1 with [a, babab]2 = 1.
Representations
Representations of S6(2)
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 28 Std Details 36 Std Details 56 Std Details 63 Std Details 72 Std Details 120 Std Details 126 Std Details 135 Std Details 240 Std Details 288 Std Details 315 Std Details 336 Std Details 378 a Std Details 378 b Std Details 960 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 0 Z 7 Std Basis 0: Lattice E7*. Details 0 Z 7 Std Basis 1: Lattice E7. Details 0 Z 7 Std Basis 2: Lattice E7*. Details 0 Z[½] 7 Std Basis 3: Orthogonal. Details 0 Z 15 Std Details 0 Z 21 a Std Details 0 Z 21 b Std Details 0 Z 27 Std Details 0 Z 35 a Std Details 0 Z 35 b Std Details 0 Z 56 Std Details 0 Z 70 Std Details 0 Z 84 Std Details 0 Z 105 a Std Details 0 Z 105 b Std Details 0 Z 105 c Std Details 0 Z 120 Std Details 0 Z 168 Std Details 0 Z 189 a Std Details 0 Z 189 b Std Details 0 Z 189 c Std Details 0 Z 210 a Std Details 0 Z 210 b Std Details 0 Z 216 Std Details Char Ring Dimension ID Generators Description Link 2 GF(2) 6 Std Details 2 GF(2) 8 Std Details 2 GF(2) 14 Std Details 2 GF(2) 48 Std Details 2 GF(2) 64 Std Details 2 GF(2) 112 Std Details 2 GF(2) 512 Std Details Char Ring Dimension ID Generators Description Link 3 GF(3) 7 Std Details 3 GF(3) 14 Std Details 3 GF(3) 21 Std Details 3 GF(3) 27 Std Details 3 GF(3) 34 Std Details 3 GF(3) 35 Std Details 3 GF(3) 49 Std Details 3 GF(3) 91 Std Details 3 GF(3) 98 Std Details 3 GF(3) 189 a Std Details 3 GF(3) 189 b Std Details 3 GF(3) 189 c Std Details 3 GF(3) 196 Std Details 3 GF(3) 405 Std Details
Representations of 2.S6(2)
- View detailed report.
- Permutation representations:
Number of points ID Generators Description Link 240 a Std Details 240 b Std Details 480 Std Details 1920 Std Details 2160 Std Details - Matrix representations
Char Ring Dimension ID Generators Description Link 0 Z 8 Std Details 3 GF(3) 8 Std Details 3 GF(3) 48 Std Details 3 GF(3) 56 a Std Details 3 GF(3) 56 b Std Details 3 GF(3) 104 Std Details 3 GF(3) 272 Std Details
Maximal subgroups
Maximal subgroups of S6(2)
Subgroup | Order | Index | Programs/reps |
---|---|---|---|
U4(2):2 | Program: Generators |
||
A8:2 =S8 | Program: Generators |
||
25:A6:2 =25:S6 | Program: Generators |
||
U3(3):2 | Program: Generators |
||
26:L3(2) | Program: Generators |
||
(21+4 × 22):(S3 × S3) | Program: Generators |
||
S3 × A6:2 =S3 × S6 | Program: Generators |
||
L2(8):3 | Program: Generators |
Conjugacy classes
Conjugacy classes of S6(2)
Conjugacy class | Centraliser order | Power up | Class rep(s) |
---|---|---|---|
1A | 1 451 520 |
abababbababbbbabababbababbbbabababbababbbbabababbababbbb |
|
2A | 23 040 |
(abbabbabbb)3 |
|
2B | 4 608 |
ababbbababbbababbbababbb |
|
2C | 1 536 |
abababbababbbbabababbababbbb |
|
2D | 384 |
(ababbba(b)−1)3 |
|
3A | 2 160 |
abbabbabbbabbabbabbb |
|
3B | 648 |
abbabbabbabb |
|
3C | 108 |
abbabbabba(b)−1abbabbabba(b)−1 |
|
4A | 384 |
ababbbbababbbb |
|
4B | 192 |
(ababbbbb)3 |
|
4C | 192 |
(ababa(b)−1)3 |
|
4D | 128 |
ababbbababbb |
|
4E | 32 |
abababbababbbb |
|
5A | 30 |
abababbbbba(b)−1abababbbbba(b)−1 |
|
6A | 144 |
abbabbabbb |
|
6B | 144 |
ababababbbb |
|
6C | 72 |
abbabb |
|
6D | 48 |
ababa(b)−1ababa(b)−1 |
|
6E | 36 |
abababba(b)−1 |
|
6F | 36 |
abbabbabba(b)−1 |
|
6G | 12 |
ababbba(b)−1 |
|
7A | 7 | aab |
|
8A | 16 |
ababbbb |
|
8B | 16 |
ababbb |
|
9A | 9 | ab |
|
10A | 10 |
abababbbbba(b)−1 |
|
12A | 24 |
ababbbbb |
|
12B | 24 |
ababa(b)−1 |
|
12C | 12 | abb |
|
15A | 15 |
abbb |
Download words for class representatives.