/* www-ATLAS of Group Representations. 3.J3:2 represented as 18 x 18 matrices over GF(2). */ F:=GF(2); x:=CambridgeMatrix(1,F,18,[ "111010111111101111", "001000111000011100", "101011110111010101", "111000010110011101", "111010111001010001", "111110010110000100", "010010010110110001", "110111111001011011", "010001001000101001", "000111000001110100", "000111010000011011", "110001001011101011", "100001101100100110", "000001101101011011", "100011001010010011", "101101110111011110", "001100101101011111", "100101001000000100"]); y:=CambridgeMatrix(1,F,18,[ "001101111100000001", "101100101001000010", "001101110101011000", "110000110100001110", "110111010001110101", "001101000111010100", "000010101001010111", "001111000000011101", "011110101000101001", "010111101100111101", "111111000100010010", "100100101110000101", "011100011000100000", "010100000010101100", "110001001011011101", "011010001000011111", "110100111011101110", "100111011010010010"]); G:=MatrixGroup<18,F|x,y>; print "Group G is 3.J3:2 < GL(18,GF(2))";