/* 3"J3 presented in terms of its standard generators. */ G:=Group; A:=x;B:=y; K1:=sub; // D18, of order 18 and index 8372160. K2:=sub; // L2(16), of order 4080 and index 36936. // `Maximal' subgroups [L2(19)s in same order as those that are produced from // the word programs J3G1-max2/3W1]. M1:=sub; // L2(16):2, of order 8160 and index 18468. M2:=sub; // L2(19), of order 3420 and index 44064. M3:=sub; // L2(19), of order 3420 and index 44064. M5:=sub; // L2(17), of order 2448 and index 61560. M6:=sub; // (3 x A6):2b, of order 2160 and index 69768. M8:=sub; // 2^{1+4}:A5, of order 1920 and index 78489. M4:=sub; // 2^4:(3 x A5), of order 2880 and index 52326. M9:=sub; // 2^{2+4}:(3 x S3), of order 1152 and index 130815. /* To establish the order of G, it is probably necessary to do an enumeration as hard as finding the 8372160 cosets of K1 = = D18. The following ought to work [WITHOUT the redundant relations]. It is a very hard enumeration though. 18*Index(G,K1:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=10*10^6); Other enumerations should work as follows [without the redundant relations]: Index(G,K2:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=100000); Index(G,M1:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=10^6); Index(G,M2:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=2*10^6); Index(G,M3:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=2*10^6); Index(G,M5:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=10^6); Index(G,M6:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=2*10^6); Index(G,M8:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=10^6); Index(G,M4:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=2*10^6); Index(G,M9:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=10^6); */