matrix := [ [Z(27)^3,Z(27)^2,Z(27)^13,Z(27)^6,0*Z(27),Z(27)^24,Z(27)^16,Z(27)^3,0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [Z(27)^24,Z(27)^2,Z(27)^18,Z(27)^14,Z(27)^24,Z(27)^6,Z(27)^19,Z(27)^20,Z(27)^5, Z(27)^25,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27)], [Z(27)^13,Z(27)^8,Z(27)^9,Z(27)^4,Z(27)^12,0*Z(27),Z(27)^20,Z(27)^19,Z(27)^5, Z(27)^12,Z(27)^12,Z(27)^15,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27)], [Z(27)^15,Z(27)^19,Z(27)^9,Z(27)^13,Z(27)^9,Z(27)^20,Z(27)^6,Z(27)^6,Z(27)^22, Z(27)^22,Z(27)^13,Z(27)^16,Z(27)^11,Z(27)^8,0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27)], [Z(27)^4,Z(27)^13,Z(27)^7,0*Z(27),Z(27)^6,Z(27)^6,Z(27)^24,Z(27)^23,Z(27)^9,Z(27)^16, Z(27)^14,Z(27)^24,Z(27)^23,Z(27)^16,Z(27)^26,Z(27)^23,0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27)], [Z(27)^26,Z(27)^9,Z(27)^3,0*Z(27),Z(27)^26,Z(27)^18,Z(27)^18,Z(27)^2,Z(27)^1, Z(27)^6,Z(27)^22,Z(27)^6,Z(27)^5,Z(27)^11,Z(27)^15,Z(27)^14,0*Z(27),Z(27)^15, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27)], [0*Z(27),Z(27)^24,Z(27)^21,Z(27)^11,0*Z(27),Z(27)^6,Z(27)^10,Z(27)^6,Z(27)^14, Z(27)^9,Z(27)^20,0*Z(27),0*Z(27),Z(27)^7,Z(27)^18,Z(27)^15,Z(27)^17,Z(27)^5, Z(27)^13,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27)], [0*Z(27),Z(27)^19,Z(27)^16,Z(27)^6,Z(27)^19,Z(27)^4,Z(27)^23,Z(27)^25,Z(27)^14, Z(27)^13,Z(27)^23,Z(27)^25,Z(27)^19,Z(27)^1,Z(27)^10,Z(27)^12,Z(27)^19,Z(27)^18, Z(27)^19,Z(27)^16,Z(27)^23,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27)], [0*Z(27),Z(27)^24,Z(27)^21,Z(27)^11,Z(27)^1,Z(27)^8,Z(27)^11,Z(27)^3,Z(27)^6, Z(27)^18,Z(27)^5,Z(27)^25,Z(27)^2,Z(27)^8,Z(27)^16,Z(27)^23,Z(27)^7,Z(27)^2, Z(27)^3,Z(27)^12,Z(27)^18,Z(27)^25,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27)], [0*Z(27),Z(27)^8,Z(27)^5,Z(27)^21,Z(27)^6,Z(27)^20,Z(27)^12,Z(27)^11,Z(27)^26, Z(27)^12,Z(27)^23,Z(27)^21,Z(27)^25,Z(27)^24,Z(27)^22,Z(27)^2,Z(27)^6,Z(27)^15, Z(27)^21,Z(27)^12,Z(27)^22,Z(27)^24,Z(27)^16,Z(27)^13,0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^6,Z(27)^3,Z(27)^19,Z(27)^26,Z(27)^15,Z(27)^21,Z(27)^20,Z(27)^6, Z(27)^25,Z(27)^12,Z(27)^12,Z(27)^11,Z(27)^11,Z(27)^12,Z(27)^15,Z(27)^19,Z(27)^16, Z(27)^12,Z(27)^1,Z(27)^26,Z(27)^23,Z(27)^22,Z(27)^6,Z(27)^17,0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^14,Z(27)^11,Z(27)^1,Z(27)^14,Z(27)^25,Z(27)^16,Z(27)^8,Z(27)^6, Z(27)^1,Z(27)^15,Z(27)^7,Z(27)^10,Z(27)^6,Z(27)^3,Z(27)^20,Z(27)^3,Z(27)^24, Z(27)^1,Z(27)^23,Z(27)^5,Z(27)^2,Z(27)^2,Z(27)^21,Z(27)^12,Z(27)^6,Z(27)^19, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^24,Z(27)^21,Z(27)^11,Z(27)^1,Z(27)^8,0*Z(27),0*Z(27),Z(27)^16, Z(27)^1,Z(27)^24,Z(27)^23,Z(27)^4,Z(27)^2,Z(27)^26,Z(27)^9,Z(27)^2,Z(27)^20, 0*Z(27),Z(27)^8,Z(27)^12,Z(27)^15,Z(27)^15,Z(27)^26,Z(27)^19,Z(27)^13,Z(27)^12, Z(27)^24,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^14,Z(27)^11,Z(27)^1,Z(27)^9,Z(27)^14,Z(27)^9,Z(27)^16,Z(27)^12, Z(27)^16,Z(27)^5,Z(27)^3,Z(27)^20,Z(27)^21,Z(27)^14,Z(27)^19,Z(27)^2,Z(27)^7, Z(27)^24,Z(27)^3,Z(27)^23,Z(27)^9,Z(27)^17,Z(27)^3,Z(27)^5,Z(27)^12,Z(27)^26, Z(27)^20,Z(27)^23,Z(27)^13,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^11,Z(27)^8,Z(27)^24,Z(27)^10,Z(27)^8,Z(27)^20,Z(27)^24,Z(27)^15, Z(27)^11,Z(27)^10,Z(27)^17,Z(27)^7,Z(27)^10,Z(27)^19,Z(27)^3,Z(27)^7,Z(27)^11, Z(27)^7,Z(27)^25,Z(27)^16,Z(27)^24,Z(27)^8,Z(27)^18,Z(27)^11,Z(27)^22,Z(27)^3, Z(27)^18,Z(27)^3,Z(27)^11,Z(27)^1,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^14,Z(27)^5,Z(27)^5,Z(27)^13,Z(27)^16,Z(27)^17, Z(27)^19,Z(27)^13,Z(27)^14,Z(27)^15,Z(27)^23,Z(27)^26,Z(27)^17,Z(27)^20,Z(27)^12, Z(27)^23,Z(27)^2,Z(27)^20,Z(27)^4,Z(27)^2,Z(27)^13,Z(27)^6,Z(27)^25,Z(27)^4, Z(27)^9,Z(27)^6,Z(27)^13,Z(27)^2,Z(27)^24,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27)], [0*Z(27),Z(27)^10,Z(27)^7,Z(27)^23,Z(27)^9,Z(27)^7,Z(27)^26,Z(27)^12,Z(27)^10, Z(27)^1,Z(27)^14,Z(27)^2,Z(27)^1,Z(27)^17,Z(27)^15,Z(27)^3,Z(27)^23,Z(27)^19, Z(27)^20,Z(27)^5,Z(27)^12,Z(27)^17,Z(27)^2,Z(27)^19,Z(27)^13,Z(27)^23,Z(27)^14, Z(27)^26,Z(27)^10,Z(27)^11,Z(27)^7,Z(27)^13,Z(27)^6,Z(27)^1,0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^6,Z(27)^3,Z(27)^19,Z(27)^21,Z(27)^7,Z(27)^16,Z(27)^6,Z(27)^18, Z(27)^21,Z(27)^11,Z(27)^19,Z(27)^20,Z(27)^4,Z(27)^16,Z(27)^22,Z(27)^20,Z(27)^1, Z(27)^21,Z(27)^14,Z(27)^6,Z(27)^8,Z(27)^8,Z(27)^17,Z(27)^14,0*Z(27),Z(27)^11, Z(27)^17,Z(27)^1,Z(27)^11,Z(27)^18,Z(27)^2,Z(27)^3,Z(27)^13,Z(27)^15,Z(27)^6, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^3,Z(27)^26,Z(27)^16,Z(27)^9,Z(27)^10,Z(27)^10,Z(27)^1,Z(27)^10, Z(27)^4,Z(27)^2,Z(27)^25,Z(27)^2,Z(27)^5,Z(27)^5,Z(27)^24,Z(27)^25,Z(27)^21, Z(27)^12,Z(27)^16,Z(27)^6,Z(27)^11,Z(27)^7,Z(27)^9,Z(27)^10,Z(27)^10,Z(27)^12, Z(27)^17,Z(27)^17,Z(27)^22,Z(27)^8,Z(27)^16,Z(27)^7,Z(27)^14,Z(27)^26,Z(27)^20, Z(27)^10,Z(27)^20,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^23,Z(27)^20,Z(27)^10,Z(27)^21,Z(27)^9,Z(27)^21,Z(27)^5,Z(27)^9, Z(27)^5,Z(27)^21,Z(27)^16,Z(27)^14,Z(27)^19,Z(27)^18,Z(27)^15,Z(27)^11,Z(27)^14, Z(27)^9,Z(27)^24,Z(27)^20,0*Z(27),Z(27)^10,Z(27)^17,Z(27)^12,Z(27)^24,Z(27)^6, Z(27)^26,Z(27)^16,Z(27)^7,Z(27)^25,Z(27)^13,Z(27)^19,Z(27)^10,Z(27)^26,Z(27)^9, Z(27)^9,Z(27)^13,Z(27)^9,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^24,Z(27)^21,Z(27)^11,Z(27)^18,Z(27)^7,Z(27)^15,Z(27)^1,Z(27)^24, Z(27)^8,Z(27)^23,Z(27)^18,Z(27)^20,Z(27)^26,Z(27)^21,Z(27)^1,Z(27)^26,Z(27)^12, Z(27)^19,Z(27)^19,Z(27)^3,Z(27)^22,0*Z(27),Z(27)^18,Z(27)^9,Z(27)^14,Z(27)^24, Z(27)^22,Z(27)^5,Z(27)^13,Z(27)^16,Z(27)^1,Z(27)^7,Z(27)^10,Z(27)^4,Z(27)^10, Z(27)^4,Z(27)^9,Z(27)^15,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^6,Z(27)^3,Z(27)^19,Z(27)^15,Z(27)^21,Z(27)^7,Z(27)^15,Z(27)^21, Z(27)^19,0*Z(27),Z(27)^6,Z(27)^18,Z(27)^15,Z(27)^16,Z(27)^14,Z(27)^21,Z(27)^20, Z(27)^15,Z(27)^5,Z(27)^5,Z(27)^4,Z(27)^23,Z(27)^22,Z(27)^21,Z(27)^13,Z(27)^12, Z(27)^19,Z(27)^1,Z(27)^1,Z(27)^13,Z(27)^10,Z(27)^8,Z(27)^9,Z(27)^4,Z(27)^7,Z(27)^23, Z(27)^21,Z(27)^24,Z(27)^24,Z(27)^4,Z(27)^12,0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^25,Z(27)^22,Z(27)^12,Z(27)^26,Z(27)^13,Z(27)^17,Z(27)^17,Z(27)^7, 0*Z(27),Z(27)^19,Z(27)^6,Z(27)^11,Z(27)^4,Z(27)^9,Z(27)^5,Z(27)^20,Z(27)^20, Z(27)^3,Z(27)^3,Z(27)^22,Z(27)^3,Z(27)^20,Z(27)^12,Z(27)^18,Z(27)^14,Z(27)^25, Z(27)^8,Z(27)^7,Z(27)^4,Z(27)^5,Z(27)^13,Z(27)^1,Z(27)^8,Z(27)^23,Z(27)^9,Z(27)^25, Z(27)^13,Z(27)^4,Z(27)^22,Z(27)^24,Z(27)^5,Z(27)^10,0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^22,Z(27)^19,Z(27)^9,Z(27)^22,Z(27)^7,Z(27)^7,Z(27)^16,Z(27)^17, Z(27)^1,Z(27)^18,Z(27)^5,Z(27)^21,Z(27)^18,Z(27)^6,Z(27)^3,Z(27)^10,Z(27)^13, Z(27)^4,Z(27)^12,Z(27)^22,Z(27)^18,Z(27)^2,Z(27)^26,Z(27)^17,Z(27)^16,Z(27)^24, Z(27)^7,Z(27)^24,Z(27)^21,Z(27)^3,Z(27)^24,Z(27)^5,Z(27)^19,Z(27)^13,Z(27)^18, Z(27)^11,Z(27)^13,Z(27)^21,Z(27)^2,Z(27)^21,Z(27)^18,Z(27)^26,0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^16,Z(27)^13,Z(27)^3,Z(27)^12,Z(27)^15,Z(27)^16,Z(27)^6,Z(27)^11, Z(27)^26,Z(27)^11,Z(27)^21,Z(27)^11,Z(27)^16,Z(27)^24,Z(27)^6,Z(27)^5,Z(27)^10, Z(27)^11,Z(27)^22,Z(27)^5,Z(27)^23,Z(27)^17,0*Z(27),Z(27)^11,Z(27)^15,Z(27)^20, Z(27)^6,Z(27)^3,Z(27)^26,Z(27)^23,Z(27)^7,Z(27)^18,Z(27)^21,Z(27)^15,Z(27)^1, Z(27)^12,Z(27)^9,Z(27)^9,Z(27)^23,Z(27)^13,0*Z(27),Z(27)^1,Z(27)^15,Z(27)^23, Z(27)^26,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^23,Z(27)^20,Z(27)^10,Z(27)^12,Z(27)^24,Z(27)^7,Z(27)^20,Z(27)^10, Z(27)^21,Z(27)^9,Z(27)^7,Z(27)^22,Z(27)^12,Z(27)^11,Z(27)^21,Z(27)^4,Z(27)^11, Z(27)^14,Z(27)^25,Z(27)^13,Z(27)^20,Z(27)^22,Z(27)^14,Z(27)^9,Z(27)^4,Z(27)^7, Z(27)^12,Z(27)^3,Z(27)^24,Z(27)^26,Z(27)^24,Z(27)^14,Z(27)^23,Z(27)^20,Z(27)^2, Z(27)^4,Z(27)^20,Z(27)^21,Z(27)^22,Z(27)^8,Z(27)^20,Z(27)^8,Z(27)^7,Z(27)^18, Z(27)^18,Z(27)^8,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^22,Z(27)^19,Z(27)^9,Z(27)^6,Z(27)^1,Z(27)^5,Z(27)^11,Z(27)^15, Z(27)^4,Z(27)^11,Z(27)^7,Z(27)^11,Z(27)^3,Z(27)^21,Z(27)^5,Z(27)^20,Z(27)^26, Z(27)^9,Z(27)^22,Z(27)^24,Z(27)^12,Z(27)^10,Z(27)^11,Z(27)^23,Z(27)^8,Z(27)^1, Z(27)^25,Z(27)^6,Z(27)^24,Z(27)^22,Z(27)^20,Z(27)^19,Z(27)^11,Z(27)^22,Z(27)^10, Z(27)^6,Z(27)^21,Z(27)^25,Z(27)^9,Z(27)^15,Z(27)^2,Z(27)^4,Z(27)^10,Z(27)^3, Z(27)^21,Z(27)^8,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^11,Z(27)^8,Z(27)^24,Z(27)^17,Z(27)^18,Z(27)^20,Z(27)^25,Z(27)^22, Z(27)^9,Z(27)^8,Z(27)^8,Z(27)^19,Z(27)^3,Z(27)^6,Z(27)^24,Z(27)^9,Z(27)^19,Z(27)^6, Z(27)^19,0*Z(27),Z(27)^2,Z(27)^24,Z(27)^19,Z(27)^16,Z(27)^15,Z(27)^16,Z(27)^17, Z(27)^2,Z(27)^4,Z(27)^15,Z(27)^22,Z(27)^23,Z(27)^24,Z(27)^10,Z(27)^26,Z(27)^23, Z(27)^9,Z(27)^1,Z(27)^22,Z(27)^16,Z(27)^9,Z(27)^3,Z(27)^9,0*Z(27),Z(27)^24,Z(27)^25, Z(27)^2,Z(27)^5,Z(27)^25,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^1,Z(27)^24,Z(27)^14,Z(27)^3,Z(27)^19,Z(27)^23,Z(27)^17,Z(27)^26, Z(27)^24,Z(27)^11,Z(27)^1,Z(27)^22,Z(27)^26,Z(27)^24,Z(27)^14,Z(27)^21,Z(27)^26, Z(27)^4,Z(27)^4,Z(27)^2,Z(27)^15,Z(27)^20,Z(27)^21,Z(27)^26,Z(27)^26,Z(27)^25, Z(27)^21,Z(27)^3,Z(27)^4,Z(27)^6,0*Z(27),Z(27)^16,Z(27)^22,Z(27)^17,Z(27)^6, Z(27)^1,Z(27)^5,Z(27)^22,Z(27)^24,Z(27)^11,Z(27)^26,Z(27)^6,Z(27)^15,Z(27)^15, Z(27)^11,Z(27)^14,Z(27)^26,Z(27)^8,Z(27)^21,Z(27)^4,0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^14,Z(27)^11,Z(27)^1,Z(27)^7,Z(27)^17,Z(27)^23,Z(27)^15,Z(27)^24, Z(27)^18,Z(27)^17,Z(27)^7,Z(27)^7,Z(27)^24,Z(27)^14,Z(27)^11,Z(27)^15,Z(27)^10, Z(27)^15,Z(27)^13,Z(27)^26,Z(27)^20,Z(27)^4,Z(27)^2,Z(27)^25,Z(27)^19,Z(27)^13, Z(27)^18,Z(27)^11,Z(27)^14,Z(27)^23,Z(27)^1,Z(27)^13,Z(27)^6,Z(27)^18,Z(27)^21, Z(27)^5,Z(27)^22,Z(27)^22,Z(27)^18,Z(27)^21,Z(27)^5,Z(27)^8,Z(27)^26,Z(27)^17, Z(27)^22,Z(27)^23,Z(27)^24,Z(27)^24,Z(27)^9,Z(27)^1,0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^9,Z(27)^6,Z(27)^22,Z(27)^2,Z(27)^12,Z(27)^22,Z(27)^3,Z(27)^22, Z(27)^9,Z(27)^1,Z(27)^22,Z(27)^22,Z(27)^14,Z(27)^9,Z(27)^6,Z(27)^7,Z(27)^21, Z(27)^9,Z(27)^21,Z(27)^8,Z(27)^1,Z(27)^26,Z(27)^26,Z(27)^7,Z(27)^24,Z(27)^19, Z(27)^9,0*Z(27),Z(27)^8,Z(27)^7,Z(27)^3,Z(27)^14,Z(27)^8,Z(27)^9,Z(27)^18,Z(27)^25, Z(27)^19,Z(27)^19,Z(27)^13,Z(27)^21,Z(27)^12,Z(27)^4,Z(27)^15,Z(27)^8,Z(27)^4, Z(27)^4,Z(27)^26,Z(27)^17,Z(27)^23,Z(27)^4,Z(27)^21,Z(27)^2,Z(27)^4,0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^18,Z(27)^15,Z(27)^5,Z(27)^22,0*Z(27),Z(27)^26,Z(27)^18,Z(27)^15, Z(27)^23,Z(27)^10,Z(27)^19,Z(27)^12,Z(27)^24,Z(27)^1,Z(27)^16,Z(27)^24,Z(27)^20, Z(27)^13,0*Z(27),Z(27)^20,Z(27)^20,Z(27)^6,Z(27)^25,0*Z(27),0*Z(27),Z(27)^12, Z(27)^1,Z(27)^14,Z(27)^14,Z(27)^22,Z(27)^8,Z(27)^21,Z(27)^9,Z(27)^23,Z(27)^16, Z(27)^12,Z(27)^23,Z(27)^14,Z(27)^19,Z(27)^20,Z(27)^24,Z(27)^17,Z(27)^21,Z(27)^4, Z(27)^4,Z(27)^23,Z(27)^18,Z(27)^23,Z(27)^5,Z(27)^7,Z(27)^21,Z(27)^2,Z(27)^4, Z(27)^14,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^17,Z(27)^14,Z(27)^4,Z(27)^3,Z(27)^11,Z(27)^19,Z(27)^7,Z(27)^3, 0*Z(27),Z(27)^16,Z(27)^8,Z(27)^20,Z(27)^17,Z(27)^14,Z(27)^18,Z(27)^1,Z(27)^16, Z(27)^2,Z(27)^25,Z(27)^26,Z(27)^20,Z(27)^1,Z(27)^9,Z(27)^3,Z(27)^19,Z(27)^20, Z(27)^2,Z(27)^19,Z(27)^5,Z(27)^12,Z(27)^13,Z(27)^23,Z(27)^17,Z(27)^15,Z(27)^15, Z(27)^11,Z(27)^19,Z(27)^18,Z(27)^6,Z(27)^10,Z(27)^5,Z(27)^13,Z(27)^22,Z(27)^8, Z(27)^22,Z(27)^22,Z(27)^5,Z(27)^15,Z(27)^3,Z(27)^13,Z(27)^3,Z(27)^10,Z(27)^12, Z(27)^5,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^19,Z(27)^16,Z(27)^6,Z(27)^8,Z(27)^20,Z(27)^6,Z(27)^26,Z(27)^2, Z(27)^1,Z(27)^4,Z(27)^19,Z(27)^13,Z(27)^3,Z(27)^20,Z(27)^26,Z(27)^5,Z(27)^9, 0*Z(27),Z(27)^7,Z(27)^15,Z(27)^1,Z(27)^18,Z(27)^18,Z(27)^5,Z(27)^15,Z(27)^25, Z(27)^23,Z(27)^24,Z(27)^19,Z(27)^24,Z(27)^15,Z(27)^2,Z(27)^8,Z(27)^11,Z(27)^22, Z(27)^26,Z(27)^20,Z(27)^22,Z(27)^2,Z(27)^25,Z(27)^18,Z(27)^20,Z(27)^22,Z(27)^2, Z(27)^14,Z(27)^2,Z(27)^2,Z(27)^18,Z(27)^14,Z(27)^22,Z(27)^20,Z(27)^13,Z(27)^23, Z(27)^26,Z(27)^7,Z(27)^1,Z(27)^13,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^17,Z(27)^14,Z(27)^4,Z(27)^9,Z(27)^8,Z(27)^20,Z(27)^21,Z(27)^13, Z(27)^18,Z(27)^17,Z(27)^18,Z(27)^26,Z(27)^3,Z(27)^11,Z(27)^3,Z(27)^13,Z(27)^10, Z(27)^19,Z(27)^18,Z(27)^11,Z(27)^9,Z(27)^1,Z(27)^10,Z(27)^24,Z(27)^12,Z(27)^17, Z(27)^19,Z(27)^18,Z(27)^16,Z(27)^1,Z(27)^21,Z(27)^7,Z(27)^25,Z(27)^25,Z(27)^14, Z(27)^18,0*Z(27),0*Z(27),Z(27)^18,Z(27)^6,Z(27)^15,Z(27)^2,Z(27)^4,Z(27)^1,Z(27)^26, Z(27)^12,Z(27)^10,Z(27)^25,Z(27)^21,Z(27)^14,Z(27)^3,Z(27)^13,Z(27)^19,Z(27)^26, Z(27)^18,Z(27)^1,Z(27)^17,Z(27)^22,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^4,Z(27)^1,Z(27)^17,Z(27)^13,Z(27)^19,0*Z(27),Z(27)^5,Z(27)^26, Z(27)^4,Z(27)^20,Z(27)^2,Z(27)^16,Z(27)^8,Z(27)^18,Z(27)^6,Z(27)^6,Z(27)^12, Z(27)^11,Z(27)^15,Z(27)^13,Z(27)^11,Z(27)^10,Z(27)^11,Z(27)^25,Z(27)^22,Z(27)^25, Z(27)^3,Z(27)^9,Z(27)^20,Z(27)^15,Z(27)^23,Z(27)^10,Z(27)^12,Z(27)^25,Z(27)^15, Z(27)^8,Z(27)^13,Z(27)^6,Z(27)^6,Z(27)^24,Z(27)^7,Z(27)^9,Z(27)^26,Z(27)^19, Z(27)^7,Z(27)^10,Z(27)^25,Z(27)^7,Z(27)^24,Z(27)^20,Z(27)^16,Z(27)^6,Z(27)^19, Z(27)^14,0*Z(27),Z(27)^16,Z(27)^18,Z(27)^18,0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^1,Z(27)^24,Z(27)^14,Z(27)^11,Z(27)^6,Z(27)^14,Z(27)^8,0*Z(27), Z(27)^1,Z(27)^8,Z(27)^4,Z(27)^24,Z(27)^10,Z(27)^20,Z(27)^26,Z(27)^8,Z(27)^16, Z(27)^4,Z(27)^10,Z(27)^9,Z(27)^16,0*Z(27),Z(27)^2,Z(27)^8,Z(27)^13,Z(27)^18, Z(27)^18,Z(27)^14,Z(27)^1,Z(27)^22,Z(27)^8,Z(27)^1,Z(27)^10,Z(27)^18,Z(27)^2, Z(27)^23,Z(27)^19,Z(27)^4,Z(27)^18,Z(27)^3,Z(27)^25,Z(27)^18,Z(27)^3,Z(27)^7, Z(27)^4,Z(27)^4,Z(27)^17,Z(27)^5,Z(27)^23,Z(27)^17,Z(27)^9,Z(27)^12,Z(27)^10, Z(27)^19,Z(27)^4,0*Z(27),Z(27)^11,Z(27)^13,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^26,Z(27)^23,Z(27)^13,Z(27)^1,Z(27)^14,Z(27)^11,Z(27)^19,Z(27)^9, Z(27)^25,Z(27)^19,Z(27)^20,Z(27)^25,Z(27)^21,Z(27)^16,Z(27)^15,Z(27)^17,Z(27)^13, Z(27)^25,Z(27)^26,Z(27)^10,Z(27)^8,Z(27)^13,Z(27)^19,Z(27)^18,Z(27)^22,Z(27)^20, Z(27)^14,Z(27)^9,Z(27)^20,Z(27)^9,0*Z(27),Z(27)^17,Z(27)^6,Z(27)^9,Z(27)^2,Z(27)^17, Z(27)^18,Z(27)^2,Z(27)^8,Z(27)^5,Z(27)^12,Z(27)^16,Z(27)^23,Z(27)^22,Z(27)^7, Z(27)^9,Z(27)^21,Z(27)^4,Z(27)^26,Z(27)^1,Z(27)^12,Z(27)^26,Z(27)^13,Z(27)^4, Z(27)^2,Z(27)^14,Z(27)^13,Z(27)^2,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^1,Z(27)^24,Z(27)^14,Z(27)^24,Z(27)^20,Z(27)^7,Z(27)^4,Z(27)^7, Z(27)^22,Z(27)^11,Z(27)^13,Z(27)^25,Z(27)^7,Z(27)^19,Z(27)^5,Z(27)^16,Z(27)^13, Z(27)^16,Z(27)^23,Z(27)^16,Z(27)^20,Z(27)^15,Z(27)^3,Z(27)^24,Z(27)^22,Z(27)^6, Z(27)^24,Z(27)^20,Z(27)^6,Z(27)^5,Z(27)^20,Z(27)^5,Z(27)^11,Z(27)^10,Z(27)^26, Z(27)^16,Z(27)^18,Z(27)^22,Z(27)^10,Z(27)^7,Z(27)^16,Z(27)^6,Z(27)^23,Z(27)^22, Z(27)^7,Z(27)^13,Z(27)^14,Z(27)^9,Z(27)^3,Z(27)^10,Z(27)^10,Z(27)^18,Z(27)^15, Z(27)^5,Z(27)^14,Z(27)^15,Z(27)^9,Z(27)^2,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^19,Z(27)^16,Z(27)^6,Z(27)^24,Z(27)^17,Z(27)^26,Z(27)^1,Z(27)^12, Z(27)^18,Z(27)^24,Z(27)^13,Z(27)^12,Z(27)^16,Z(27)^4,Z(27)^3,Z(27)^15,Z(27)^20, Z(27)^17,Z(27)^1,Z(27)^7,Z(27)^7,Z(27)^4,Z(27)^21,Z(27)^5,0*Z(27),Z(27)^2,Z(27)^10, Z(27)^2,Z(27)^11,Z(27)^25,Z(27)^26,Z(27)^26,Z(27)^20,0*Z(27),Z(27)^3,Z(27)^20, Z(27)^4,Z(27)^12,Z(27)^11,Z(27)^1,Z(27)^2,Z(27)^5,Z(27)^20,Z(27)^1,Z(27)^25, Z(27)^26,Z(27)^15,Z(27)^13,Z(27)^2,Z(27)^11,Z(27)^23,Z(27)^11,Z(27)^19,Z(27)^23, Z(27)^2,Z(27)^17,Z(27)^10,Z(27)^3,Z(27)^19,Z(27)^3,Z(27)^22,Z(27)^1,0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^19,Z(27)^16,Z(27)^6,Z(27)^4,Z(27)^6,Z(27)^16,Z(27)^5,Z(27)^24, Z(27)^17,Z(27)^26,Z(27)^3,Z(27)^14,Z(27)^14,Z(27)^16,Z(27)^20,0*Z(27),Z(27)^14, 0*Z(27),Z(27)^3,Z(27)^14,Z(27)^13,Z(27)^19,Z(27)^22,Z(27)^24,Z(27)^23,Z(27)^6, Z(27)^4,Z(27)^2,Z(27)^16,Z(27)^25,Z(27)^20,Z(27)^6,Z(27)^1,Z(27)^26,Z(27)^23, Z(27)^21,Z(27)^24,Z(27)^5,Z(27)^8,Z(27)^10,Z(27)^15,Z(27)^13,0*Z(27),Z(27)^10, Z(27)^4,Z(27)^8,0*Z(27),Z(27)^16,0*Z(27),Z(27)^4,Z(27)^8,Z(27)^26,Z(27)^16,Z(27)^4, Z(27)^7,Z(27)^4,Z(27)^23,0*Z(27),Z(27)^9,Z(27)^19,Z(27)^12,Z(27)^17,0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^13,Z(27)^10,Z(27)^26,Z(27)^22,Z(27)^2,Z(27)^9,Z(27)^14,Z(27)^24, Z(27)^4,Z(27)^11,Z(27)^20,Z(27)^8,Z(27)^17,Z(27)^6,Z(27)^16,Z(27)^13,Z(27)^23, Z(27)^14,Z(27)^24,Z(27)^24,Z(27)^21,Z(27)^9,Z(27)^7,Z(27)^1,Z(27)^26,Z(27)^10, Z(27)^6,Z(27)^7,Z(27)^21,Z(27)^19,Z(27)^9,Z(27)^26,Z(27)^22,Z(27)^19,Z(27)^26, Z(27)^21,Z(27)^1,Z(27)^21,Z(27)^20,Z(27)^13,Z(27)^7,Z(27)^5,Z(27)^12,Z(27)^4, Z(27)^13,Z(27)^7,Z(27)^5,Z(27)^20,0*Z(27),Z(27)^3,Z(27)^14,0*Z(27),Z(27)^16, Z(27)^12,Z(27)^22,Z(27)^21,Z(27)^22,Z(27)^18,Z(27)^6,Z(27)^16,Z(27)^9,Z(27)^14, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^12,Z(27)^9,Z(27)^25,Z(27)^23,Z(27)^25,Z(27)^26,Z(27)^8,Z(27)^16, 0*Z(27),Z(27)^19,Z(27)^5,Z(27)^18,Z(27)^20,Z(27)^16,Z(27)^9,Z(27)^24,Z(27)^22, Z(27)^22,Z(27)^4,Z(27)^2,Z(27)^12,Z(27)^5,Z(27)^13,0*Z(27),Z(27)^16,Z(27)^26, Z(27)^18,Z(27)^26,Z(27)^18,Z(27)^11,Z(27)^20,Z(27)^24,Z(27)^19,Z(27)^25,Z(27)^25, Z(27)^8,Z(27)^17,Z(27)^2,Z(27)^11,Z(27)^10,Z(27)^3,Z(27)^1,Z(27)^18,Z(27)^25, Z(27)^20,Z(27)^2,Z(27)^20,Z(27)^18,Z(27)^26,Z(27)^11,Z(27)^13,0*Z(27),Z(27)^21, Z(27)^13,Z(27)^14,Z(27)^11,Z(27)^7,Z(27)^5,Z(27)^24,Z(27)^8,Z(27)^1,Z(27)^6, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^22,Z(27)^13,Z(27)^17,Z(27)^10,Z(27)^23, Z(27)^15,Z(27)^26,Z(27)^13,Z(27)^24,Z(27)^16,Z(27)^18,Z(27)^15,Z(27)^13,Z(27)^19, Z(27)^25,Z(27)^24,Z(27)^4,Z(27)^7,Z(27)^21,Z(27)^4,Z(27)^9,Z(27)^24,Z(27)^10, Z(27)^13,0*Z(27),Z(27)^9,Z(27)^1,Z(27)^10,Z(27)^8,Z(27)^9,Z(27)^23,Z(27)^2,Z(27)^5, Z(27)^25,Z(27)^25,Z(27)^11,Z(27)^26,Z(27)^11,Z(27)^6,Z(27)^7,Z(27)^6,Z(27)^23, 0*Z(27),Z(27)^3,Z(27)^14,Z(27)^25,Z(27)^23,Z(27)^8,Z(27)^13,Z(27)^13,Z(27)^26, Z(27)^26,Z(27)^14,Z(27)^4,0*Z(27),Z(27)^3,0*Z(27),Z(27)^13,Z(27)^1,Z(27)^9,Z(27)^25, Z(27)^18,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^19,Z(27)^16,Z(27)^6,Z(27)^15,Z(27)^18,Z(27)^13,Z(27)^17,Z(27)^21, Z(27)^15,Z(27)^16,Z(27)^22,Z(27)^16,Z(27)^8,Z(27)^7,Z(27)^25,Z(27)^26,Z(27)^6, Z(27)^6,Z(27)^23,Z(27)^19,Z(27)^12,Z(27)^16,Z(27)^11,Z(27)^24,0*Z(27),Z(27)^19, Z(27)^25,Z(27)^8,Z(27)^16,Z(27)^3,Z(27)^11,Z(27)^24,Z(27)^15,Z(27)^25,Z(27)^24, Z(27)^15,Z(27)^2,Z(27)^10,Z(27)^10,Z(27)^3,Z(27)^10,Z(27)^21,Z(27)^6,Z(27)^7, Z(27)^14,Z(27)^8,Z(27)^26,Z(27)^1,Z(27)^26,Z(27)^21,Z(27)^16,Z(27)^13,Z(27)^22, Z(27)^25,Z(27)^21,Z(27)^15,Z(27)^24,Z(27)^5,Z(27)^22,Z(27)^3,Z(27)^18,Z(27)^9, Z(27)^8,Z(27)^24,Z(27)^17,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^18,Z(27)^15,Z(27)^5,Z(27)^10,Z(27)^9,Z(27)^4,Z(27)^15,Z(27)^6, Z(27)^18,Z(27)^2,Z(27)^24,Z(27)^7,Z(27)^11,Z(27)^15,Z(27)^17,Z(27)^6,Z(27)^12, Z(27)^6,Z(27)^24,Z(27)^10,Z(27)^7,Z(27)^7,Z(27)^17,Z(27)^6,Z(27)^14,Z(27)^11, Z(27)^20,Z(27)^19,Z(27)^16,Z(27)^4,Z(27)^3,Z(27)^10,Z(27)^5,Z(27)^11,Z(27)^2, Z(27)^21,Z(27)^24,Z(27)^4,Z(27)^11,Z(27)^16,Z(27)^16,Z(27)^15,Z(27)^3,Z(27)^26, Z(27)^26,Z(27)^7,Z(27)^15,Z(27)^14,Z(27)^7,Z(27)^10,Z(27)^11,Z(27)^16,Z(27)^25, Z(27)^12,Z(27)^16,Z(27)^15,Z(27)^6,Z(27)^26,Z(27)^11,Z(27)^5,Z(27)^10,Z(27)^21, Z(27)^15,Z(27)^5,Z(27)^24,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^15,Z(27)^12,Z(27)^2,Z(27)^26,Z(27)^2,Z(27)^20,Z(27)^16,Z(27)^1, Z(27)^10,Z(27)^11,Z(27)^26,Z(27)^17,0*Z(27),Z(27)^9,Z(27)^25,Z(27)^5,Z(27)^10, Z(27)^4,Z(27)^1,Z(27)^26,Z(27)^1,Z(27)^13,Z(27)^13,Z(27)^16,Z(27)^15,Z(27)^24, Z(27)^14,Z(27)^8,Z(27)^21,Z(27)^21,Z(27)^4,Z(27)^17,Z(27)^2,Z(27)^14,Z(27)^18, Z(27)^13,Z(27)^23,Z(27)^17,Z(27)^10,Z(27)^23,Z(27)^9,Z(27)^3,Z(27)^6,Z(27)^6, Z(27)^11,Z(27)^16,Z(27)^6,Z(27)^15,0*Z(27),Z(27)^15,Z(27)^20,Z(27)^8,Z(27)^12, Z(27)^20,0*Z(27),Z(27)^9,Z(27)^18,Z(27)^5,Z(27)^5,0*Z(27),Z(27)^15,Z(27)^3,Z(27)^11, Z(27)^1,Z(27)^20,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^5,Z(27)^2,Z(27)^18,Z(27)^9,0*Z(27),Z(27)^9,0*Z(27),Z(27)^2,Z(27)^18, Z(27)^7,Z(27)^17,Z(27)^26,Z(27)^24,Z(27)^14,Z(27)^17,Z(27)^20,Z(27)^15,Z(27)^12, Z(27)^10,Z(27)^23,Z(27)^11,Z(27)^24,Z(27)^15,Z(27)^24,Z(27)^22,Z(27)^16,Z(27)^12, Z(27)^8,Z(27)^11,Z(27)^5,Z(27)^15,Z(27)^24,Z(27)^1,Z(27)^15,Z(27)^26,Z(27)^10, Z(27)^8,Z(27)^1,Z(27)^11,Z(27)^24,Z(27)^10,0*Z(27),Z(27)^17,0*Z(27),Z(27)^4, Z(27)^24,Z(27)^2,Z(27)^6,Z(27)^24,Z(27)^23,Z(27)^12,Z(27)^5,Z(27)^3,Z(27)^2, Z(27)^21,Z(27)^5,Z(27)^7,Z(27)^3,0*Z(27),Z(27)^21,Z(27)^13,Z(27)^15,Z(27)^21, Z(27)^21,Z(27)^24,Z(27)^10,Z(27)^17,Z(27)^14,0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^15,Z(27)^12,Z(27)^2,Z(27)^6,Z(27)^10,Z(27)^1,Z(27)^22,Z(27)^2, Z(27)^8,Z(27)^22,Z(27)^9,Z(27)^3,Z(27)^21,Z(27)^17,Z(27)^5,Z(27)^26,Z(27)^17, Z(27)^16,Z(27)^21,Z(27)^18,Z(27)^24,Z(27)^11,Z(27)^24,Z(27)^5,Z(27)^20,Z(27)^9, Z(27)^15,Z(27)^13,Z(27)^8,Z(27)^10,Z(27)^24,Z(27)^3,0*Z(27),Z(27)^11,Z(27)^10, Z(27)^12,Z(27)^9,Z(27)^18,Z(27)^10,Z(27)^22,Z(27)^20,Z(27)^12,Z(27)^25,Z(27)^25, Z(27)^15,Z(27)^4,Z(27)^14,Z(27)^24,Z(27)^2,Z(27)^5,Z(27)^19,Z(27)^11,Z(27)^3, Z(27)^4,Z(27)^20,Z(27)^20,Z(27)^18,Z(27)^9,Z(27)^23,Z(27)^20,Z(27)^22,Z(27)^17, Z(27)^21,Z(27)^13,Z(27)^11,Z(27)^11,Z(27)^18,Z(27)^15,0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^2,Z(27)^25,Z(27)^15,Z(27)^6,0*Z(27),Z(27)^16,Z(27)^10,Z(27)^16, Z(27)^23,Z(27)^9,Z(27)^3,Z(27)^18,Z(27)^1,Z(27)^10,Z(27)^5,Z(27)^23,Z(27)^6, Z(27)^25,0*Z(27),Z(27)^21,Z(27)^23,Z(27)^7,Z(27)^14,0*Z(27),Z(27)^23,Z(27)^19, Z(27)^10,Z(27)^26,Z(27)^17,Z(27)^15,Z(27)^24,Z(27)^2,Z(27)^3,Z(27)^21,Z(27)^4, Z(27)^10,Z(27)^19,Z(27)^1,0*Z(27),Z(27)^6,Z(27)^22,Z(27)^11,Z(27)^15,Z(27)^15, Z(27)^11,Z(27)^24,Z(27)^25,Z(27)^7,Z(27)^20,Z(27)^4,Z(27)^13,Z(27)^5,Z(27)^8, Z(27)^4,Z(27)^20,Z(27)^25,Z(27)^9,Z(27)^18,Z(27)^23,Z(27)^10,Z(27)^11,Z(27)^8, Z(27)^6,Z(27)^11,Z(27)^5,Z(27)^18,Z(27)^25,Z(27)^22,0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^5,Z(27)^2,Z(27)^18,Z(27)^10,Z(27)^3,Z(27)^11,Z(27)^11,Z(27)^17, Z(27)^23,Z(27)^1,Z(27)^21,Z(27)^26,Z(27)^22,Z(27)^2,Z(27)^21,Z(27)^17,Z(27)^26, Z(27)^26,Z(27)^13,Z(27)^21,Z(27)^15,Z(27)^8,Z(27)^14,Z(27)^18,Z(27)^23,Z(27)^20, Z(27)^15,Z(27)^12,Z(27)^12,0*Z(27),Z(27)^6,Z(27)^17,Z(27)^5,Z(27)^15,Z(27)^19, Z(27)^25,Z(27)^26,Z(27)^11,Z(27)^23,Z(27)^14,Z(27)^20,Z(27)^15,Z(27)^2,Z(27)^8, Z(27)^17,Z(27)^1,Z(27)^16,Z(27)^1,Z(27)^18,Z(27)^19,Z(27)^6,Z(27)^24,Z(27)^15, Z(27)^19,Z(27)^9,Z(27)^26,Z(27)^7,Z(27)^24,Z(27)^11,0*Z(27),Z(27)^11,Z(27)^11, Z(27)^11,Z(27)^6,Z(27)^7,Z(27)^9,Z(27)^16,Z(27)^13,0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^21,Z(27)^18,Z(27)^8,Z(27)^17,Z(27)^20,Z(27)^6,Z(27)^14,Z(27)^19, Z(27)^12,Z(27)^12,Z(27)^10,Z(27)^26,Z(27)^16,Z(27)^7,Z(27)^14,Z(27)^1,Z(27)^1, Z(27)^4,Z(27)^26,Z(27)^15,Z(27)^18,Z(27)^15,Z(27)^26,Z(27)^23,Z(27)^2,Z(27)^18, Z(27)^8,Z(27)^13,Z(27)^21,Z(27)^13,Z(27)^15,Z(27)^24,Z(27)^12,Z(27)^12,Z(27)^11, Z(27)^24,Z(27)^21,Z(27)^17,Z(27)^25,Z(27)^23,Z(27)^24,0*Z(27),Z(27)^21,Z(27)^22, Z(27)^10,Z(27)^5,Z(27)^3,Z(27)^24,0*Z(27),Z(27)^24,Z(27)^8,Z(27)^20,Z(27)^14, Z(27)^15,Z(27)^14,Z(27)^11,Z(27)^24,Z(27)^10,Z(27)^24,0*Z(27),Z(27)^4,Z(27)^1, Z(27)^11,Z(27)^12,Z(27)^24,Z(27)^6,Z(27)^26,Z(27)^18,Z(27)^2,Z(27)^2,Z(27)^26, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^1,Z(27)^24,Z(27)^14,Z(27)^22,Z(27)^1,Z(27)^11,Z(27)^10,Z(27)^23, Z(27)^17,Z(27)^20,Z(27)^17,Z(27)^6,Z(27)^15,Z(27)^19,Z(27)^4,Z(27)^5,Z(27)^2, Z(27)^26,Z(27)^23,Z(27)^7,Z(27)^26,Z(27)^6,Z(27)^24,Z(27)^23,Z(27)^26,Z(27)^7, Z(27)^20,Z(27)^17,Z(27)^9,Z(27)^8,Z(27)^22,Z(27)^10,Z(27)^24,Z(27)^23,Z(27)^10, 0*Z(27),Z(27)^12,Z(27)^13,Z(27)^22,Z(27)^11,Z(27)^26,Z(27)^26,Z(27)^5,Z(27)^5, Z(27)^22,Z(27)^26,Z(27)^6,Z(27)^10,Z(27)^20,Z(27)^14,0*Z(27),Z(27)^13,Z(27)^16, Z(27)^16,Z(27)^22,Z(27)^20,Z(27)^11,Z(27)^17,Z(27)^22,Z(27)^6,Z(27)^4,Z(27)^24, Z(27)^15,Z(27)^24,Z(27)^10,Z(27)^20,Z(27)^11,Z(27)^4,Z(27)^1,Z(27)^1,Z(27)^25, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^12,Z(27)^9,Z(27)^25,Z(27)^23,Z(27)^25,Z(27)^1,Z(27)^24,Z(27)^1, Z(27)^8,Z(27)^11,Z(27)^11,Z(27)^2,Z(27)^3,Z(27)^1,Z(27)^26,Z(27)^12,Z(27)^17, Z(27)^17,Z(27)^5,Z(27)^1,Z(27)^10,Z(27)^13,Z(27)^9,Z(27)^18,Z(27)^14,Z(27)^5, Z(27)^26,Z(27)^13,Z(27)^22,Z(27)^3,Z(27)^23,Z(27)^11,Z(27)^15,Z(27)^22,Z(27)^10, 0*Z(27),Z(27)^5,Z(27)^11,Z(27)^2,0*Z(27),Z(27)^17,Z(27)^22,Z(27)^2,Z(27)^26, Z(27)^19,Z(27)^1,Z(27)^1,Z(27)^17,Z(27)^5,Z(27)^10,Z(27)^2,Z(27)^23,Z(27)^14, Z(27)^3,Z(27)^14,Z(27)^11,Z(27)^1,Z(27)^23,Z(27)^16,Z(27)^8,Z(27)^17,Z(27)^5, Z(27)^4,Z(27)^18,Z(27)^17,Z(27)^15,Z(27)^7,Z(27)^10,Z(27)^17,Z(27)^17,Z(27)^15, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^22,Z(27)^19,Z(27)^9,Z(27)^7,Z(27)^9,Z(27)^15,Z(27)^10,Z(27)^2, Z(27)^25,Z(27)^10,Z(27)^18,Z(27)^11,Z(27)^5,Z(27)^1,Z(27)^18,Z(27)^1,Z(27)^8, Z(27)^14,Z(27)^22,Z(27)^11,Z(27)^16,Z(27)^7,Z(27)^14,Z(27)^8,Z(27)^6,0*Z(27), Z(27)^1,Z(27)^26,Z(27)^3,Z(27)^24,Z(27)^23,Z(27)^19,Z(27)^24,Z(27)^7,Z(27)^14, Z(27)^16,Z(27)^7,Z(27)^13,Z(27)^22,Z(27)^18,Z(27)^7,Z(27)^1,Z(27)^3,Z(27)^23, 0*Z(27),Z(27)^8,Z(27)^2,Z(27)^1,Z(27)^23,Z(27)^20,Z(27)^20,Z(27)^13,Z(27)^25, Z(27)^9,Z(27)^15,0*Z(27),Z(27)^3,Z(27)^14,Z(27)^9,Z(27)^6,Z(27)^23,Z(27)^11, Z(27)^22,Z(27)^17,Z(27)^18,Z(27)^20,Z(27)^1,Z(27)^24,0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^18,Z(27)^15,Z(27)^5,Z(27)^11,Z(27)^21,Z(27)^23,Z(27)^7,Z(27)^5, Z(27)^1,Z(27)^18,Z(27)^21,Z(27)^20,Z(27)^2,Z(27)^19,Z(27)^16,Z(27)^11,Z(27)^1, Z(27)^10,Z(27)^2,Z(27)^2,Z(27)^2,Z(27)^1,Z(27)^21,Z(27)^11,Z(27)^7,Z(27)^20, Z(27)^5,Z(27)^10,Z(27)^6,Z(27)^3,Z(27)^12,Z(27)^12,Z(27)^14,Z(27)^22,Z(27)^4, Z(27)^17,Z(27)^12,Z(27)^17,Z(27)^8,Z(27)^5,Z(27)^9,Z(27)^22,Z(27)^2,Z(27)^16, Z(27)^22,Z(27)^9,Z(27)^26,Z(27)^22,Z(27)^7,Z(27)^12,Z(27)^1,Z(27)^23,Z(27)^7, Z(27)^12,Z(27)^25,Z(27)^6,Z(27)^21,Z(27)^24,Z(27)^5,Z(27)^7,Z(27)^4,Z(27)^18, Z(27)^23,Z(27)^18,Z(27)^13,Z(27)^17,Z(27)^8,Z(27)^23,Z(27)^9,Z(27)^19,Z(27)^21, 0*Z(27),Z(27)^17,Z(27)^23,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^1,Z(27)^24,Z(27)^14,Z(27)^19,Z(27)^18,Z(27)^13,Z(27)^12,Z(27)^24, Z(27)^5,Z(27)^15,Z(27)^14,Z(27)^11,Z(27)^23,Z(27)^12,Z(27)^10,Z(27)^9,Z(27)^19, Z(27)^20,Z(27)^2,Z(27)^21,Z(27)^20,Z(27)^6,Z(27)^22,Z(27)^20,Z(27)^15,Z(27)^18, Z(27)^23,Z(27)^5,Z(27)^23,Z(27)^16,Z(27)^21,Z(27)^23,Z(27)^3,Z(27)^14,Z(27)^13, Z(27)^22,Z(27)^5,Z(27)^12,Z(27)^25,Z(27)^17,Z(27)^3,Z(27)^3,0*Z(27),Z(27)^16, Z(27)^17,Z(27)^26,Z(27)^9,Z(27)^12,Z(27)^19,Z(27)^18,Z(27)^19,Z(27)^16,Z(27)^7, Z(27)^17,Z(27)^13,Z(27)^7,Z(27)^3,Z(27)^19,Z(27)^10,Z(27)^6,Z(27)^25,Z(27)^16, Z(27)^25,Z(27)^26,Z(27)^16,Z(27)^17,Z(27)^9,Z(27)^19,Z(27)^12,Z(27)^24,Z(27)^21, 0*Z(27),Z(27)^4,Z(27)^10,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^3,Z(27)^26,Z(27)^16,Z(27)^10,Z(27)^7,Z(27)^3,Z(27)^26,Z(27)^18, Z(27)^7,Z(27)^8,Z(27)^21,Z(27)^3,Z(27)^1,Z(27)^13,Z(27)^19,Z(27)^26,Z(27)^8, Z(27)^25,Z(27)^14,Z(27)^6,Z(27)^19,Z(27)^21,Z(27)^10,Z(27)^7,Z(27)^17,Z(27)^15, Z(27)^14,Z(27)^6,Z(27)^24,Z(27)^9,Z(27)^20,Z(27)^26,Z(27)^7,Z(27)^18,Z(27)^8, Z(27)^16,Z(27)^8,Z(27)^22,Z(27)^3,Z(27)^8,Z(27)^7,Z(27)^26,Z(27)^17,Z(27)^16, Z(27)^5,Z(27)^10,Z(27)^2,Z(27)^3,Z(27)^9,Z(27)^17,Z(27)^25,Z(27)^2,Z(27)^15, Z(27)^6,Z(27)^14,Z(27)^24,Z(27)^18,Z(27)^24,Z(27)^5,Z(27)^26,Z(27)^12,Z(27)^15, Z(27)^16,Z(27)^9,Z(27)^18,Z(27)^17,Z(27)^3,Z(27)^24,Z(27)^22,Z(27)^25,Z(27)^25, 0*Z(27),Z(27)^2,Z(27)^8,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^17,Z(27)^14,Z(27)^4,Z(27)^19,Z(27)^9,Z(27)^23,Z(27)^13,Z(27)^14, Z(27)^6,Z(27)^19,Z(27)^12,Z(27)^15,Z(27)^22,Z(27)^20,Z(27)^11,Z(27)^4,Z(27)^13, Z(27)^22,Z(27)^7,Z(27)^2,0*Z(27),Z(27)^19,Z(27)^11,Z(27)^13,Z(27)^6,Z(27)^3, Z(27)^9,Z(27)^16,0*Z(27),Z(27)^13,Z(27)^26,Z(27)^9,Z(27)^25,Z(27)^12,Z(27)^25, Z(27)^6,Z(27)^6,Z(27)^21,Z(27)^26,Z(27)^20,Z(27)^8,Z(27)^25,Z(27)^11,Z(27)^10, Z(27)^8,Z(27)^13,Z(27)^21,Z(27)^3,Z(27)^11,Z(27)^3,Z(27)^9,Z(27)^2,Z(27)^3,Z(27)^20, Z(27)^12,Z(27)^3,Z(27)^7,Z(27)^5,Z(27)^9,Z(27)^8,Z(27)^16,Z(27)^2,Z(27)^21,Z(27)^8, Z(27)^9,Z(27)^9,Z(27)^9,Z(27)^5,Z(27)^5,Z(27)^18,Z(27)^13,0*Z(27),Z(27)^2,Z(27)^8, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^18,Z(27)^15,Z(27)^5,Z(27)^11,Z(27)^21,Z(27)^4,Z(27)^7,Z(27)^14, Z(27)^7,Z(27)^18,Z(27)^10,Z(27)^22,Z(27)^25,Z(27)^6,Z(27)^26,Z(27)^19,Z(27)^26, Z(27)^21,Z(27)^21,Z(27)^5,Z(27)^21,Z(27)^7,0*Z(27),Z(27)^9,Z(27)^9,Z(27)^24, 0*Z(27),Z(27)^7,Z(27)^26,Z(27)^14,Z(27)^6,Z(27)^3,Z(27)^23,Z(27)^9,Z(27)^5,Z(27)^2, Z(27)^7,Z(27)^6,Z(27)^21,Z(27)^21,Z(27)^20,Z(27)^3,Z(27)^12,Z(27)^2,0*Z(27), Z(27)^6,Z(27)^9,Z(27)^9,Z(27)^13,Z(27)^5,Z(27)^8,Z(27)^11,Z(27)^20,Z(27)^7,Z(27)^19, Z(27)^9,Z(27)^1,Z(27)^14,Z(27)^3,Z(27)^17,Z(27)^20,Z(27)^6,Z(27)^19,Z(27)^12, Z(27)^24,Z(27)^5,Z(27)^8,Z(27)^23,Z(27)^16,Z(27)^12,0*Z(27),Z(27)^18,Z(27)^25, Z(27)^7,Z(27)^14,Z(27)^12,Z(27)^11,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^13,Z(27)^10,Z(27)^26,Z(27)^5,Z(27)^4,Z(27)^8,Z(27)^11,Z(27)^25, Z(27)^15,Z(27)^19,Z(27)^19,0*Z(27),Z(27)^8,Z(27)^24,Z(27)^1,Z(27)^8,Z(27)^6, Z(27)^24,Z(27)^6,Z(27)^20,Z(27)^12,Z(27)^26,Z(27)^17,Z(27)^21,0*Z(27),Z(27)^2, Z(27)^3,Z(27)^6,Z(27)^18,Z(27)^24,Z(27)^10,Z(27)^22,Z(27)^16,Z(27)^11,Z(27)^18, Z(27)^22,Z(27)^16,Z(27)^8,Z(27)^15,Z(27)^22,Z(27)^23,Z(27)^13,Z(27)^2,Z(27)^3, Z(27)^14,Z(27)^17,Z(27)^12,Z(27)^20,Z(27)^20,Z(27)^13,Z(27)^23,Z(27)^12,Z(27)^16, Z(27)^24,Z(27)^9,Z(27)^18,Z(27)^8,Z(27)^20,Z(27)^22,Z(27)^19,Z(27)^14,Z(27)^9, Z(27)^2,Z(27)^5,Z(27)^8,Z(27)^22,Z(27)^3,Z(27)^26,0*Z(27),Z(27)^9,Z(27)^19,Z(27)^21, Z(27)^17,Z(27)^21,Z(27)^8,Z(27)^12,Z(27)^4,Z(27)^18,0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^5,Z(27)^2,Z(27)^18,Z(27)^7,Z(27)^23,Z(27)^1,Z(27)^4,Z(27)^25,Z(27)^6, Z(27)^10,Z(27)^20,Z(27)^4,0*Z(27),Z(27)^22,Z(27)^10,Z(27)^25,Z(27)^23,Z(27)^6, Z(27)^25,Z(27)^23,Z(27)^22,0*Z(27),Z(27)^26,Z(27)^25,Z(27)^26,Z(27)^26,Z(27)^21, Z(27)^23,Z(27)^17,0*Z(27),Z(27)^6,Z(27)^4,Z(27)^18,0*Z(27),Z(27)^17,Z(27)^24, Z(27)^20,Z(27)^1,Z(27)^15,Z(27)^23,Z(27)^24,Z(27)^18,Z(27)^26,Z(27)^7,0*Z(27), Z(27)^20,Z(27)^8,Z(27)^23,Z(27)^1,Z(27)^22,Z(27)^25,Z(27)^9,Z(27)^10,Z(27)^25, Z(27)^25,Z(27)^13,Z(27)^25,Z(27)^10,Z(27)^4,Z(27)^13,Z(27)^16,Z(27)^11,Z(27)^13, Z(27)^9,Z(27)^2,Z(27)^17,Z(27)^26,Z(27)^5,Z(27)^13,Z(27)^14,Z(27)^9,Z(27)^7, Z(27)^15,Z(27)^22,Z(27)^6,Z(27)^9,Z(27)^14,Z(27)^26,Z(27)^6,0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),Z(27)^26,Z(27)^23,Z(27)^13,Z(27)^21,Z(27)^26,Z(27)^4,Z(27)^7,Z(27)^21, Z(27)^23,Z(27)^3,Z(27)^8,Z(27)^26,Z(27)^21,Z(27)^24,Z(27)^25,Z(27)^10,Z(27)^3, Z(27)^8,Z(27)^4,0*Z(27),Z(27)^26,Z(27)^24,Z(27)^14,Z(27)^16,Z(27)^25,Z(27)^26, Z(27)^22,Z(27)^16,Z(27)^10,Z(27)^16,Z(27)^22,Z(27)^8,Z(27)^12,Z(27)^26,Z(27)^12, Z(27)^6,Z(27)^8,Z(27)^20,Z(27)^10,Z(27)^15,Z(27)^19,Z(27)^5,Z(27)^17,Z(27)^12, Z(27)^1,Z(27)^23,Z(27)^15,Z(27)^18,Z(27)^21,Z(27)^5,Z(27)^7,Z(27)^5,Z(27)^23, Z(27)^20,Z(27)^23,Z(27)^21,Z(27)^2,Z(27)^14,Z(27)^18,Z(27)^23,Z(27)^8,Z(27)^24, Z(27)^25,Z(27)^19,Z(27)^21,0*Z(27),Z(27)^3,Z(27)^25,Z(27)^7,Z(27)^6,Z(27)^9, Z(27)^18,Z(27)^17,Z(27)^18,Z(27)^26,Z(27)^24,Z(27)^7,Z(27)^14,Z(27)^10,Z(27)^4, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^1,Z(27)^18,Z(27)^9,Z(27)^12,Z(27)^5,Z(27)^26, Z(27)^21,Z(27)^21,Z(27)^19,0*Z(27),Z(27)^20,Z(27)^19,Z(27)^9,Z(27)^4,Z(27)^26, 0*Z(27),Z(27)^22,Z(27)^8,Z(27)^17,Z(27)^21,Z(27)^3,Z(27)^10,Z(27)^22,Z(27)^9, Z(27)^26,Z(27)^13,0*Z(27),Z(27)^18,Z(27)^12,Z(27)^21,Z(27)^17,Z(27)^19,Z(27)^21, Z(27)^11,Z(27)^10,Z(27)^16,Z(27)^24,Z(27)^18,Z(27)^15,Z(27)^22,0*Z(27),Z(27)^17, Z(27)^19,Z(27)^3,Z(27)^23,Z(27)^18,Z(27)^24,Z(27)^6,Z(27)^22,Z(27)^7,Z(27)^25, Z(27)^26,Z(27)^23,Z(27)^10,0*Z(27),Z(27)^1,Z(27)^10,Z(27)^12,Z(27)^22,Z(27)^4, Z(27)^3,Z(27)^17,Z(27)^8,Z(27)^15,Z(27)^9,Z(27)^21,Z(27)^4,Z(27)^7,Z(27)^8,Z(27)^24, Z(27)^10,Z(27)^2,Z(27)^16,Z(27)^23,Z(27)^6,Z(27)^20,Z(27)^9,Z(27)^14,0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^5,Z(27)^22,Z(27)^11,Z(27)^14,Z(27)^19, Z(27)^11,0*Z(27),Z(27)^13,Z(27)^26,Z(27)^1,Z(27)^12,Z(27)^18,Z(27)^16,Z(27)^2, Z(27)^17,Z(27)^19,Z(27)^20,Z(27)^25,Z(27)^5,Z(27)^16,Z(27)^18,Z(27)^3,Z(27)^9, Z(27)^18,Z(27)^25,Z(27)^10,0*Z(27),Z(27)^25,Z(27)^7,Z(27)^17,Z(27)^20,Z(27)^13, Z(27)^19,Z(27)^21,Z(27)^20,Z(27)^16,Z(27)^4,Z(27)^11,Z(27)^4,Z(27)^18,Z(27)^13, Z(27)^7,Z(27)^22,Z(27)^9,Z(27)^3,Z(27)^19,Z(27)^24,Z(27)^17,Z(27)^19,Z(27)^25, Z(27)^20,0*Z(27),Z(27)^19,Z(27)^4,Z(27)^19,Z(27)^3,0*Z(27),Z(27)^23,Z(27)^19, Z(27)^1,Z(27)^14,Z(27)^10,Z(27)^12,Z(27)^17,Z(27)^11,Z(27)^15,Z(27)^20,Z(27)^12, Z(27)^17,Z(27)^25,Z(27)^12,Z(27)^14,Z(27)^1,Z(27)^17,Z(27)^12,Z(27)^17,Z(27)^15, Z(27)^16,Z(27)^7,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^11,Z(27)^2,Z(27)^11,Z(27)^14,0*Z(27),Z(27)^10, Z(27)^9,Z(27)^1,Z(27)^22,Z(27)^25,Z(27)^26,Z(27)^2,Z(27)^22,Z(27)^7,Z(27)^14, Z(27)^1,Z(27)^21,Z(27)^10,Z(27)^22,Z(27)^13,Z(27)^17,Z(27)^17,Z(27)^2,Z(27)^11, Z(27)^25,Z(27)^7,Z(27)^1,Z(27)^2,Z(27)^11,Z(27)^16,Z(27)^22,Z(27)^23,0*Z(27), Z(27)^10,Z(27)^9,Z(27)^17,Z(27)^15,Z(27)^5,Z(27)^9,Z(27)^7,Z(27)^11,Z(27)^11, Z(27)^17,Z(27)^22,Z(27)^1,Z(27)^18,Z(27)^23,Z(27)^15,Z(27)^13,Z(27)^8,Z(27)^7, Z(27)^23,Z(27)^9,Z(27)^7,Z(27)^10,Z(27)^26,Z(27)^26,Z(27)^11,Z(27)^1,Z(27)^14, Z(27)^13,Z(27)^14,Z(27)^19,Z(27)^13,Z(27)^1,Z(27)^23,Z(27)^25,Z(27)^25,Z(27)^24, Z(27)^10,Z(27)^3,Z(27)^5,Z(27)^11,Z(27)^22,Z(27)^6,Z(27)^26,Z(27)^22,Z(27)^10, Z(27)^17,Z(27)^15,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^11,Z(27)^2,Z(27)^26,Z(27)^3,Z(27)^23,Z(27)^24, Z(27)^22,Z(27)^11,Z(27)^14,Z(27)^12,Z(27)^13,Z(27)^18,Z(27)^22,Z(27)^15,Z(27)^14, Z(27)^23,Z(27)^25,Z(27)^8,Z(27)^19,Z(27)^5,Z(27)^26,Z(27)^17,Z(27)^4,Z(27)^10, Z(27)^20,Z(27)^2,Z(27)^7,Z(27)^1,Z(27)^2,Z(27)^11,Z(27)^9,Z(27)^21,Z(27)^23, Z(27)^15,Z(27)^16,Z(27)^2,Z(27)^18,Z(27)^10,0*Z(27),Z(27)^13,Z(27)^10,Z(27)^14, Z(27)^19,Z(27)^8,Z(27)^11,Z(27)^20,Z(27)^23,Z(27)^7,Z(27)^11,Z(27)^3,Z(27)^12, Z(27)^2,Z(27)^3,Z(27)^25,Z(27)^7,Z(27)^1,Z(27)^3,Z(27)^16,Z(27)^9,Z(27)^24,Z(27)^16, Z(27)^22,Z(27)^7,Z(27)^3,Z(27)^13,Z(27)^23,Z(27)^3,Z(27)^15,Z(27)^1,Z(27)^13, Z(27)^7,Z(27)^26,Z(27)^15,Z(27)^3,Z(27)^12,Z(27)^14,Z(27)^11,Z(27)^1,Z(27)^21, Z(27)^17,Z(27)^5,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^20,Z(27)^11,Z(27)^25,Z(27)^2,Z(27)^23, Z(27)^22,Z(27)^11,Z(27)^20,Z(27)^12,Z(27)^10,Z(27)^19,Z(27)^10,Z(27)^10,Z(27)^14, Z(27)^18,Z(27)^14,Z(27)^26,Z(27)^16,Z(27)^25,Z(27)^13,Z(27)^15,Z(27)^16,Z(27)^19, Z(27)^11,Z(27)^23,Z(27)^17,0*Z(27),Z(27)^7,Z(27)^3,Z(27)^3,Z(27)^8,Z(27)^8,Z(27)^11, Z(27)^8,Z(27)^9,Z(27)^22,Z(27)^5,Z(27)^21,Z(27)^5,Z(27)^24,Z(27)^6,Z(27)^1,Z(27)^3, Z(27)^8,Z(27)^13,Z(27)^9,Z(27)^22,0*Z(27),Z(27)^14,Z(27)^15,Z(27)^20,Z(27)^8, Z(27)^24,Z(27)^7,Z(27)^17,0*Z(27),Z(27)^19,Z(27)^25,Z(27)^22,Z(27)^16,Z(27)^20, Z(27)^12,Z(27)^15,Z(27)^23,Z(27)^24,Z(27)^23,Z(27)^5,Z(27)^21,Z(27)^13,Z(27)^17, Z(27)^25,Z(27)^7,Z(27)^8,Z(27)^4,Z(27)^14,Z(27)^22,Z(27)^4,Z(27)^9,Z(27)^11, Z(27)^6,Z(27)^24,Z(27)^15,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^3,Z(27)^20,Z(27)^20,Z(27)^23,Z(27)^3,Z(27)^9, Z(27)^9,Z(27)^3,Z(27)^20,Z(27)^12,Z(27)^13,Z(27)^9,Z(27)^10,Z(27)^5,Z(27)^26, Z(27)^8,Z(27)^5,Z(27)^12,Z(27)^5,Z(27)^2,Z(27)^26,Z(27)^17,Z(27)^25,Z(27)^23, Z(27)^5,Z(27)^19,Z(27)^8,Z(27)^10,Z(27)^1,Z(27)^1,Z(27)^3,Z(27)^9,Z(27)^1,Z(27)^11, Z(27)^25,Z(27)^3,Z(27)^11,Z(27)^9,Z(27)^13,Z(27)^8,Z(27)^14,Z(27)^21,Z(27)^21, Z(27)^8,Z(27)^26,Z(27)^13,Z(27)^13,Z(27)^10,Z(27)^1,Z(27)^19,Z(27)^15,Z(27)^3, Z(27)^19,Z(27)^14,Z(27)^26,Z(27)^21,Z(27)^4,Z(27)^25,Z(27)^16,Z(27)^17,Z(27)^23, Z(27)^3,Z(27)^8,Z(27)^15,Z(27)^8,Z(27)^14,Z(27)^16,0*Z(27),Z(27)^5,Z(27)^17, 0*Z(27),Z(27)^23,Z(27)^15,Z(27)^22,0*Z(27),Z(27)^17,Z(27)^9,Z(27)^8,Z(27)^2, Z(27)^6,Z(27)^2,Z(27)^7,Z(27)^5,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^6,Z(27)^23,Z(27)^5,Z(27)^8,Z(27)^26,Z(27)^4, 0*Z(27),Z(27)^5,Z(27)^26,Z(27)^22,Z(27)^12,Z(27)^2,Z(27)^23,Z(27)^6,Z(27)^19, Z(27)^22,Z(27)^25,Z(27)^18,Z(27)^7,Z(27)^5,Z(27)^16,Z(27)^8,Z(27)^7,Z(27)^13, Z(27)^10,Z(27)^24,Z(27)^17,Z(27)^3,Z(27)^24,Z(27)^6,Z(27)^11,Z(27)^11,Z(27)^20, Z(27)^6,Z(27)^7,Z(27)^14,Z(27)^12,Z(27)^20,Z(27)^18,Z(27)^25,Z(27)^23,Z(27)^19, Z(27)^26,Z(27)^6,0*Z(27),Z(27)^13,Z(27)^8,Z(27)^22,Z(27)^14,Z(27)^9,Z(27)^20, Z(27)^16,Z(27)^16,0*Z(27),Z(27)^12,Z(27)^4,Z(27)^7,Z(27)^15,Z(27)^11,Z(27)^17, Z(27)^4,Z(27)^16,Z(27)^3,Z(27)^23,Z(27)^15,Z(27)^19,Z(27)^11,Z(27)^24,Z(27)^13, Z(27)^22,Z(27)^12,Z(27)^11,Z(27)^17,Z(27)^7,Z(27)^4,Z(27)^4,Z(27)^18,Z(27)^11, Z(27)^21,Z(27)^4,Z(27)^1,Z(27)^8,Z(27)^1,Z(27)^21,0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^19,Z(27)^10,Z(27)^22,Z(27)^25,Z(27)^24, Z(27)^1,Z(27)^14,Z(27)^22,Z(27)^5,Z(27)^12,Z(27)^7,Z(27)^2,Z(27)^8,Z(27)^8,Z(27)^5, Z(27)^14,Z(27)^14,Z(27)^16,Z(27)^14,Z(27)^15,Z(27)^9,Z(27)^8,0*Z(27),Z(27)^16, Z(27)^24,Z(27)^11,Z(27)^3,Z(27)^8,0*Z(27),Z(27)^24,Z(27)^4,Z(27)^2,Z(27)^12, Z(27)^4,Z(27)^6,Z(27)^11,0*Z(27),Z(27)^7,Z(27)^7,Z(27)^13,Z(27)^15,Z(27)^20, Z(27)^25,Z(27)^17,Z(27)^4,Z(27)^25,Z(27)^21,Z(27)^5,Z(27)^3,Z(27)^4,Z(27)^10, Z(27)^2,Z(27)^25,Z(27)^17,Z(27)^15,Z(27)^21,Z(27)^21,Z(27)^9,Z(27)^4,Z(27)^25, Z(27)^15,Z(27)^10,Z(27)^19,Z(27)^25,Z(27)^12,Z(27)^13,Z(27)^4,Z(27)^23,Z(27)^20, Z(27)^16,Z(27)^23,Z(27)^18,Z(27)^21,Z(27)^15,Z(27)^12,Z(27)^15,Z(27)^10,Z(27)^21, Z(27)^24,Z(27)^3,Z(27)^6,Z(27)^3,Z(27)^22,Z(27)^4,Z(27)^4,0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^6,Z(27)^23,Z(27)^4,Z(27)^7,Z(27)^2,Z(27)^9, Z(27)^3,Z(27)^19,Z(27)^24,Z(27)^18,Z(27)^16,Z(27)^3,Z(27)^20,Z(27)^15,Z(27)^15, Z(27)^4,Z(27)^9,Z(27)^19,Z(27)^25,Z(27)^19,Z(27)^10,Z(27)^25,Z(27)^8,Z(27)^15, Z(27)^19,Z(27)^21,Z(27)^24,Z(27)^8,Z(27)^16,Z(27)^12,Z(27)^13,Z(27)^2,Z(27)^14, Z(27)^7,Z(27)^13,Z(27)^1,Z(27)^13,Z(27)^1,Z(27)^2,Z(27)^25,Z(27)^23,Z(27)^2, Z(27)^3,Z(27)^26,Z(27)^22,Z(27)^24,Z(27)^20,Z(27)^23,Z(27)^17,Z(27)^19,Z(27)^6, Z(27)^3,Z(27)^22,Z(27)^19,Z(27)^20,Z(27)^6,Z(27)^20,Z(27)^17,Z(27)^7,Z(27)^3, Z(27)^1,Z(27)^23,Z(27)^14,Z(27)^3,Z(27)^17,Z(27)^21,Z(27)^2,Z(27)^9,Z(27)^25, Z(27)^15,Z(27)^25,Z(27)^9,Z(27)^22,Z(27)^22,Z(27)^16,Z(27)^26,Z(27)^26,Z(27)^13, Z(27)^11,Z(27)^1,Z(27)^15,Z(27)^4,Z(27)^11,Z(27)^2,Z(27)^15,Z(27)^7,0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^19,Z(27)^10,Z(27)^15,Z(27)^18,Z(27)^8, Z(27)^8,Z(27)^24,Z(27)^9,Z(27)^24,Z(27)^7,Z(27)^3,Z(27)^11,Z(27)^17,Z(27)^24, Z(27)^12,Z(27)^6,Z(27)^12,Z(27)^15,Z(27)^19,Z(27)^8,Z(27)^18,Z(27)^7,Z(27)^11, Z(27)^1,Z(27)^12,Z(27)^15,0*Z(27),Z(27)^8,Z(27)^23,Z(27)^16,Z(27)^23,Z(27)^5, Z(27)^15,Z(27)^10,Z(27)^3,Z(27)^24,Z(27)^13,Z(27)^22,Z(27)^7,Z(27)^1,Z(27)^6, Z(27)^14,Z(27)^1,Z(27)^21,Z(27)^18,0*Z(27),Z(27)^2,Z(27)^26,Z(27)^5,Z(27)^23, Z(27)^15,Z(27)^17,Z(27)^14,Z(27)^18,Z(27)^22,Z(27)^10,Z(27)^9,Z(27)^21,Z(27)^23, Z(27)^1,Z(27)^17,Z(27)^20,0*Z(27),Z(27)^9,Z(27)^25,Z(27)^5,Z(27)^7,Z(27)^1,Z(27)^13, Z(27)^2,Z(27)^22,0*Z(27),Z(27)^8,Z(27)^26,Z(27)^2,Z(27)^19,Z(27)^21,Z(27)^3, Z(27)^11,Z(27)^10,Z(27)^26,Z(27)^10,Z(27)^3,Z(27)^22,Z(27)^17,0*Z(27),Z(27)^25, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^22,Z(27)^13,Z(27)^25,Z(27)^2,Z(27)^11, Z(27)^3,Z(27)^12,Z(27)^22,Z(27)^26,Z(27)^19,Z(27)^8,Z(27)^13,Z(27)^17,Z(27)^4, Z(27)^7,Z(27)^3,Z(27)^10,Z(27)^17,Z(27)^10,Z(27)^5,Z(27)^20,Z(27)^21,Z(27)^3, Z(27)^15,Z(27)^12,Z(27)^3,Z(27)^9,Z(27)^20,Z(27)^5,Z(27)^8,Z(27)^19,Z(27)^11, 0*Z(27),Z(27)^12,Z(27)^5,Z(27)^8,Z(27)^18,Z(27)^26,Z(27)^24,Z(27)^16,Z(27)^9, Z(27)^1,Z(27)^10,Z(27)^22,Z(27)^25,Z(27)^19,Z(27)^20,Z(27)^5,Z(27)^24,Z(27)^3, Z(27)^3,Z(27)^5,Z(27)^9,Z(27)^21,Z(27)^11,Z(27)^13,Z(27)^15,Z(27)^9,Z(27)^17, Z(27)^23,Z(27)^20,Z(27)^23,Z(27)^9,Z(27)^3,Z(27)^22,Z(27)^15,Z(27)^5,Z(27)^18, Z(27)^15,Z(27)^7,Z(27)^7,Z(27)^20,Z(27)^7,Z(27)^16,Z(27)^7,Z(27)^14,Z(27)^14, Z(27)^8,Z(27)^1,Z(27)^4,Z(27)^13,Z(27)^21,0*Z(27),Z(27)^2,Z(27)^19,Z(27)^1,Z(27)^9, Z(27)^14,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^1,Z(27)^18,Z(27)^26,Z(27)^3,Z(27)^9,Z(27)^17, Z(27)^17,Z(27)^21,Z(27)^19,Z(27)^11,Z(27)^24,Z(27)^16,Z(27)^25,Z(27)^24,Z(27)^21, Z(27)^13,Z(27)^10,Z(27)^12,0*Z(27),Z(27)^17,Z(27)^9,Z(27)^19,Z(27)^18,Z(27)^6, Z(27)^18,Z(27)^20,Z(27)^12,Z(27)^19,Z(27)^25,Z(27)^12,Z(27)^24,Z(27)^11,Z(27)^13, Z(27)^17,Z(27)^24,Z(27)^23,Z(27)^2,Z(27)^4,Z(27)^20,Z(27)^20,Z(27)^16,Z(27)^3, Z(27)^26,Z(27)^9,Z(27)^19,Z(27)^12,0*Z(27),Z(27)^16,Z(27)^15,Z(27)^5,Z(27)^5, Z(27)^26,Z(27)^19,0*Z(27),Z(27)^20,Z(27)^14,Z(27)^17,Z(27)^4,Z(27)^4,Z(27)^1, Z(27)^7,Z(27)^6,Z(27)^23,Z(27)^16,Z(27)^12,Z(27)^1,Z(27)^23,Z(27)^25,Z(27)^11, Z(27)^19,Z(27)^18,Z(27)^11,Z(27)^2,Z(27)^25,0*Z(27),Z(27)^6,Z(27)^20,Z(27)^22, Z(27)^15,Z(27)^18,Z(27)^9,Z(27)^26,0*Z(27),Z(27)^2,Z(27)^22,Z(27)^18,Z(27)^21, Z(27)^14,Z(27)^17,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^12,Z(27)^3,Z(27)^11,Z(27)^14,Z(27)^3,Z(27)^11, Z(27)^8,Z(27)^18,Z(27)^24,Z(27)^9,Z(27)^1,Z(27)^24,Z(27)^8,Z(27)^4,Z(27)^25, Z(27)^26,0*Z(27),Z(27)^25,Z(27)^21,Z(27)^21,Z(27)^23,Z(27)^2,Z(27)^18,Z(27)^17, Z(27)^26,Z(27)^1,Z(27)^8,Z(27)^7,0*Z(27),Z(27)^26,Z(27)^12,Z(27)^19,Z(27)^11, Z(27)^14,Z(27)^24,Z(27)^14,Z(27)^20,Z(27)^15,Z(27)^17,Z(27)^7,Z(27)^24,Z(27)^19, Z(27)^18,Z(27)^11,Z(27)^15,Z(27)^22,0*Z(27),Z(27)^11,Z(27)^21,Z(27)^9,Z(27)^12, Z(27)^25,Z(27)^21,Z(27)^17,Z(27)^6,Z(27)^11,Z(27)^18,Z(27)^2,Z(27)^7,Z(27)^15, Z(27)^25,Z(27)^23,Z(27)^3,Z(27)^1,Z(27)^20,Z(27)^2,Z(27)^6,Z(27)^15,Z(27)^21, Z(27)^16,Z(27)^11,Z(27)^13,Z(27)^9,Z(27)^2,Z(27)^23,Z(27)^25,Z(27)^1,Z(27)^17, Z(27)^22,Z(27)^11,Z(27)^5,Z(27)^25,Z(27)^20,Z(27)^19,Z(27)^24,Z(27)^25,Z(27)^12, Z(27)^2,Z(27)^1,Z(27)^18,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^24,Z(27)^15,Z(27)^6,Z(27)^9,Z(27)^14,0*Z(27), Z(27)^3,Z(27)^8,Z(27)^16,Z(27)^18,Z(27)^2,Z(27)^3,Z(27)^9,Z(27)^19,Z(27)^15, Z(27)^22,Z(27)^3,Z(27)^13,Z(27)^7,Z(27)^5,Z(27)^4,Z(27)^5,Z(27)^25,Z(27)^14, Z(27)^8,Z(27)^15,Z(27)^5,Z(27)^18,Z(27)^20,Z(27)^9,Z(27)^20,Z(27)^1,Z(27)^9, Z(27)^21,Z(27)^15,Z(27)^3,Z(27)^23,Z(27)^11,Z(27)^13,Z(27)^8,Z(27)^5,Z(27)^8, Z(27)^17,0*Z(27),Z(27)^7,Z(27)^20,Z(27)^9,Z(27)^12,Z(27)^24,Z(27)^8,Z(27)^9, Z(27)^19,0*Z(27),Z(27)^4,Z(27)^23,Z(27)^17,Z(27)^9,Z(27)^1,Z(27)^1,Z(27)^23, Z(27)^16,Z(27)^17,Z(27)^1,Z(27)^13,Z(27)^22,Z(27)^1,Z(27)^12,Z(27)^8,Z(27)^20, Z(27)^25,Z(27)^4,Z(27)^2,Z(27)^11,Z(27)^4,Z(27)^7,Z(27)^2,Z(27)^10,0*Z(27),0*Z(27), Z(27)^17,Z(27)^20,Z(27)^12,Z(27)^20,Z(27)^13,Z(27)^20,Z(27)^21,Z(27)^12,Z(27)^19, Z(27)^4,Z(27)^22,Z(27)^23,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^18,Z(27)^9,Z(27)^18,Z(27)^21,Z(27)^14, Z(27)^14,Z(27)^1,Z(27)^20,Z(27)^25,Z(27)^19,Z(27)^9,Z(27)^21,0*Z(27),Z(27)^1, Z(27)^1,Z(27)^13,Z(27)^18,Z(27)^17,Z(27)^16,Z(27)^24,Z(27)^19,Z(27)^20,Z(27)^25, Z(27)^1,Z(27)^23,Z(27)^10,Z(27)^6,Z(27)^25,Z(27)^20,Z(27)^14,Z(27)^26,Z(27)^6, Z(27)^1,Z(27)^6,Z(27)^7,Z(27)^19,Z(27)^19,Z(27)^15,Z(27)^5,Z(27)^23,Z(27)^14, Z(27)^20,Z(27)^26,Z(27)^23,Z(27)^26,Z(27)^11,Z(27)^23,Z(27)^1,Z(27)^7,Z(27)^26, Z(27)^5,Z(27)^15,Z(27)^4,Z(27)^1,Z(27)^10,Z(27)^7,Z(27)^10,Z(27)^17,Z(27)^22, Z(27)^22,Z(27)^22,Z(27)^10,Z(27)^4,Z(27)^8,Z(27)^25,Z(27)^15,Z(27)^1,Z(27)^11, Z(27)^17,Z(27)^8,Z(27)^11,Z(27)^8,Z(27)^22,Z(27)^12,Z(27)^20,Z(27)^16,Z(27)^16, Z(27)^13,Z(27)^2,Z(27)^22,Z(27)^11,Z(27)^9,Z(27)^3,Z(27)^25,Z(27)^10,Z(27)^17, Z(27)^8,Z(27)^3,Z(27)^15,Z(27)^25,Z(27)^17,Z(27)^18,0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^14,Z(27)^5,Z(27)^18,Z(27)^21,Z(27)^5,Z(27)^16, Z(27)^23,Z(27)^5,Z(27)^18,Z(27)^7,Z(27)^2,Z(27)^15,Z(27)^24,Z(27)^11,Z(27)^13, Z(27)^1,Z(27)^4,Z(27)^2,Z(27)^18,Z(27)^11,Z(27)^7,Z(27)^10,Z(27)^8,Z(27)^14, Z(27)^11,Z(27)^16,Z(27)^16,Z(27)^12,Z(27)^14,Z(27)^25,Z(27)^25,Z(27)^10,Z(27)^24, Z(27)^5,Z(27)^1,Z(27)^25,Z(27)^3,0*Z(27),Z(27)^7,Z(27)^14,Z(27)^16,Z(27)^23, Z(27)^19,Z(27)^18,Z(27)^24,Z(27)^13,Z(27)^1,Z(27)^22,Z(27)^13,Z(27)^22,0*Z(27), Z(27)^21,Z(27)^7,Z(27)^14,Z(27)^6,Z(27)^5,Z(27)^21,Z(27)^4,Z(27)^21,Z(27)^4, Z(27)^21,Z(27)^21,Z(27)^15,Z(27)^2,Z(27)^8,Z(27)^26,Z(27)^4,Z(27)^1,Z(27)^24, Z(27)^12,Z(27)^25,Z(27)^1,Z(27)^15,Z(27)^18,Z(27)^21,Z(27)^16,Z(27)^10,Z(27)^22, Z(27)^6,Z(27)^24,Z(27)^26,Z(27)^1,Z(27)^5,Z(27)^14,Z(27)^25,Z(27)^8,Z(27)^15, Z(27)^22,0*Z(27),Z(27)^17,Z(27)^19,Z(27)^21,Z(27)^10,Z(27)^11,0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^22,Z(27)^13,Z(27)^11,Z(27)^14,Z(27)^5, Z(27)^1,Z(27)^3,Z(27)^6,Z(27)^18,Z(27)^6,Z(27)^15,Z(27)^15,Z(27)^17,Z(27)^10, Z(27)^25,Z(27)^25,Z(27)^26,Z(27)^7,Z(27)^3,Z(27)^22,Z(27)^3,Z(27)^2,Z(27)^26, Z(27)^24,Z(27)^3,Z(27)^17,Z(27)^6,Z(27)^6,Z(27)^23,Z(27)^6,Z(27)^8,Z(27)^8,Z(27)^6, Z(27)^2,Z(27)^22,Z(27)^21,Z(27)^23,Z(27)^12,Z(27)^1,Z(27)^14,Z(27)^9,Z(27)^23, Z(27)^10,Z(27)^6,Z(27)^12,Z(27)^21,Z(27)^13,Z(27)^2,Z(27)^6,Z(27)^17,Z(27)^15, Z(27)^13,Z(27)^7,Z(27)^16,Z(27)^4,0*Z(27),Z(27)^17,Z(27)^22,Z(27)^2,Z(27)^10, Z(27)^18,Z(27)^6,Z(27)^11,Z(27)^8,Z(27)^7,Z(27)^21,Z(27)^21,Z(27)^18,Z(27)^9, Z(27)^24,Z(27)^9,Z(27)^9,Z(27)^21,Z(27)^6,Z(27)^5,Z(27)^4,Z(27)^6,Z(27)^26,0*Z(27), Z(27)^16,Z(27)^23,Z(27)^11,Z(27)^7,Z(27)^2,0*Z(27),Z(27)^26,Z(27)^10,Z(27)^16, Z(27)^3,Z(27)^15,Z(27)^4,Z(27)^6,Z(27)^24,Z(27)^4,Z(27)^18,Z(27)^22,0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^12,Z(27)^3,Z(27)^19,Z(27)^22,Z(27)^7,Z(27)^26, Z(27)^19,Z(27)^26,Z(27)^22,Z(27)^8,Z(27)^13,Z(27)^10,Z(27)^7,Z(27)^1,Z(27)^6, Z(27)^24,Z(27)^24,Z(27)^24,Z(27)^23,0*Z(27),0*Z(27),Z(27)^14,Z(27)^9,Z(27)^6, Z(27)^6,Z(27)^1,Z(27)^24,Z(27)^6,Z(27)^6,Z(27)^18,Z(27)^22,Z(27)^13,Z(27)^24, Z(27)^7,Z(27)^10,Z(27)^9,Z(27)^10,Z(27)^3,Z(27)^23,Z(27)^21,Z(27)^4,Z(27)^7, Z(27)^11,Z(27)^25,Z(27)^8,Z(27)^16,Z(27)^20,0*Z(27),Z(27)^3,Z(27)^16,Z(27)^15, Z(27)^2,Z(27)^19,Z(27)^21,Z(27)^21,Z(27)^3,Z(27)^5,Z(27)^9,Z(27)^7,Z(27)^19, Z(27)^2,Z(27)^1,Z(27)^2,Z(27)^3,Z(27)^12,Z(27)^20,Z(27)^24,Z(27)^9,Z(27)^22, Z(27)^21,Z(27)^25,Z(27)^4,Z(27)^1,Z(27)^22,Z(27)^4,Z(27)^13,Z(27)^19,Z(27)^5, Z(27)^9,Z(27)^17,Z(27)^5,Z(27)^21,Z(27)^26,Z(27)^5,Z(27)^23,Z(27)^17,Z(27)^3, Z(27)^17,Z(27)^4,Z(27)^5,Z(27)^24,Z(27)^14,Z(27)^23,Z(27)^13,Z(27)^5,Z(27)^9, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^19,Z(27)^10,Z(27)^6,Z(27)^9,Z(27)^24,Z(27)^1, Z(27)^2,Z(27)^12,Z(27)^16,Z(27)^16,Z(27)^14,Z(27)^6,Z(27)^6,Z(27)^16,Z(27)^16, Z(27)^23,Z(27)^12,Z(27)^4,Z(27)^24,Z(27)^13,Z(27)^19,Z(27)^19,Z(27)^8,Z(27)^22, Z(27)^24,Z(27)^23,Z(27)^14,Z(27)^16,Z(27)^2,Z(27)^20,Z(27)^5,Z(27)^19,Z(27)^5, Z(27)^14,Z(27)^16,Z(27)^7,Z(27)^4,Z(27)^19,Z(27)^8,Z(27)^3,Z(27)^23,Z(27)^9, Z(27)^16,Z(27)^14,Z(27)^10,Z(27)^5,Z(27)^2,Z(27)^26,Z(27)^17,Z(27)^12,Z(27)^11, Z(27)^10,Z(27)^23,Z(27)^25,Z(27)^3,Z(27)^13,Z(27)^6,Z(27)^11,Z(27)^12,Z(27)^21, Z(27)^9,Z(27)^18,Z(27)^17,Z(27)^16,Z(27)^2,Z(27)^17,Z(27)^18,Z(27)^22,Z(27)^15, Z(27)^8,0*Z(27),Z(27)^8,Z(27)^6,Z(27)^25,Z(27)^3,Z(27)^14,Z(27)^13,Z(27)^6,Z(27)^24, Z(27)^9,Z(27)^1,Z(27)^8,Z(27)^21,Z(27)^8,Z(27)^8,Z(27)^9,Z(27)^8,Z(27)^6,Z(27)^24, Z(27)^11,Z(27)^8,Z(27)^2,Z(27)^25,Z(27)^19,Z(27)^12,Z(27)^15,Z(27)^6,Z(27)^10, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^2,Z(27)^19,Z(27)^6,Z(27)^9,Z(27)^8,Z(27)^25, Z(27)^16,Z(27)^4,Z(27)^22,Z(27)^11,Z(27)^16,Z(27)^19,Z(27)^23,Z(27)^25,Z(27)^22, Z(27)^6,Z(27)^16,Z(27)^13,Z(27)^7,Z(27)^6,Z(27)^24,Z(27)^24,Z(27)^5,Z(27)^13, Z(27)^20,Z(27)^7,Z(27)^4,Z(27)^8,Z(27)^9,Z(27)^9,Z(27)^24,Z(27)^10,Z(27)^16, Z(27)^12,Z(27)^25,Z(27)^16,Z(27)^5,Z(27)^5,Z(27)^23,Z(27)^20,Z(27)^7,Z(27)^15, Z(27)^15,Z(27)^4,Z(27)^17,Z(27)^3,Z(27)^24,Z(27)^5,Z(27)^10,Z(27)^20,Z(27)^9, Z(27)^9,Z(27)^26,Z(27)^20,Z(27)^24,Z(27)^9,Z(27)^17,Z(27)^10,Z(27)^14,Z(27)^22, Z(27)^3,Z(27)^10,Z(27)^1,Z(27)^9,Z(27)^14,Z(27)^14,Z(27)^3,Z(27)^9,Z(27)^15, Z(27)^11,Z(27)^3,Z(27)^20,Z(27)^13,Z(27)^5,Z(27)^12,Z(27)^2,Z(27)^15,Z(27)^6, Z(27)^25,Z(27)^6,Z(27)^13,Z(27)^15,Z(27)^9,Z(27)^22,Z(27)^5,Z(27)^22,Z(27)^19, Z(27)^13,Z(27)^6,Z(27)^13,Z(27)^1,Z(27)^22,Z(27)^26,Z(27)^16,Z(27)^4,Z(27)^3, Z(27)^20,Z(27)^12,Z(27)^5,Z(27)^25,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^24,Z(27)^15,Z(27)^22,Z(27)^25,Z(27)^18, Z(27)^22,Z(27)^18,Z(27)^10,Z(27)^19,Z(27)^16,Z(27)^8,Z(27)^25,Z(27)^17,Z(27)^23, 0*Z(27),Z(27)^25,Z(27)^2,Z(27)^4,Z(27)^21,Z(27)^6,Z(27)^4,Z(27)^26,Z(27)^5,Z(27)^24, Z(27)^24,Z(27)^16,Z(27)^24,Z(27)^11,Z(27)^13,Z(27)^14,Z(27)^1,Z(27)^6,Z(27)^1, Z(27)^3,Z(27)^15,Z(27)^17,Z(27)^8,0*Z(27),Z(27)^8,Z(27)^4,Z(27)^13,Z(27)^10, Z(27)^7,Z(27)^19,Z(27)^25,Z(27)^4,Z(27)^18,Z(27)^6,Z(27)^16,Z(27)^22,Z(27)^19, Z(27)^16,Z(27)^2,Z(27)^17,Z(27)^21,Z(27)^1,Z(27)^23,Z(27)^15,Z(27)^21,Z(27)^26, Z(27)^16,Z(27)^25,Z(27)^24,Z(27)^15,Z(27)^14,Z(27)^12,Z(27)^20,Z(27)^12,Z(27)^12, Z(27)^13,Z(27)^10,Z(27)^16,Z(27)^3,Z(27)^10,Z(27)^19,Z(27)^26,Z(27)^20,Z(27)^10, Z(27)^21,Z(27)^19,Z(27)^23,Z(27)^24,Z(27)^2,Z(27)^10,Z(27)^17,Z(27)^9,Z(27)^13, Z(27)^19,Z(27)^14,Z(27)^26,Z(27)^9,Z(27)^8,Z(27)^21,Z(27)^21,Z(27)^18,Z(27)^6, Z(27)^2,Z(27)^15,Z(27)^18,Z(27)^12,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^2,Z(27)^19,Z(27)^18,Z(27)^21,Z(27)^10, Z(27)^13,Z(27)^7,Z(27)^21,Z(27)^17,Z(27)^9,Z(27)^22,Z(27)^22,Z(27)^9,Z(27)^4, Z(27)^22,Z(27)^20,Z(27)^9,Z(27)^7,Z(27)^14,Z(27)^17,Z(27)^6,Z(27)^10,Z(27)^12, Z(27)^25,Z(27)^19,Z(27)^5,Z(27)^13,Z(27)^19,Z(27)^13,Z(27)^18,Z(27)^15,Z(27)^13, Z(27)^14,Z(27)^25,Z(27)^9,Z(27)^13,Z(27)^4,Z(27)^1,Z(27)^9,Z(27)^19,Z(27)^23, Z(27)^2,Z(27)^9,Z(27)^10,Z(27)^16,Z(27)^22,Z(27)^16,Z(27)^21,Z(27)^1,Z(27)^26, Z(27)^2,Z(27)^10,Z(27)^22,Z(27)^7,Z(27)^4,Z(27)^20,Z(27)^6,Z(27)^1,Z(27)^16, Z(27)^20,Z(27)^18,Z(27)^17,Z(27)^18,Z(27)^6,Z(27)^7,Z(27)^24,0*Z(27),Z(27)^15, Z(27)^19,Z(27)^16,Z(27)^14,Z(27)^24,Z(27)^26,Z(27)^17,Z(27)^22,0*Z(27),Z(27)^10, Z(27)^16,Z(27)^20,Z(27)^20,Z(27)^15,Z(27)^11,Z(27)^14,Z(27)^7,Z(27)^1,Z(27)^16, Z(27)^10,Z(27)^12,Z(27)^12,Z(27)^18,Z(27)^15,Z(27)^13,Z(27)^11,Z(27)^23,Z(27)^3, Z(27)^23,Z(27)^21,Z(27)^17,Z(27)^19,Z(27)^15,Z(27)^3,Z(27)^3,0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^2,Z(27)^19,Z(27)^19,Z(27)^22,Z(27)^11, Z(27)^12,Z(27)^15,Z(27)^1,Z(27)^6,Z(27)^3,Z(27)^23,Z(27)^15,Z(27)^3,Z(27)^15, Z(27)^1,Z(27)^15,Z(27)^18,Z(27)^25,Z(27)^26,Z(27)^26,Z(27)^1,Z(27)^4,Z(27)^7, Z(27)^2,Z(27)^17,Z(27)^2,Z(27)^20,Z(27)^23,Z(27)^3,Z(27)^15,Z(27)^16,Z(27)^20, Z(27)^8,Z(27)^18,Z(27)^10,Z(27)^18,Z(27)^11,Z(27)^8,Z(27)^17,Z(27)^3,Z(27)^9, Z(27)^5,Z(27)^26,Z(27)^16,Z(27)^7,Z(27)^24,Z(27)^8,Z(27)^3,0*Z(27),Z(27)^3,Z(27)^19, Z(27)^12,Z(27)^16,Z(27)^11,Z(27)^8,0*Z(27),Z(27)^17,Z(27)^11,Z(27)^4,Z(27)^11, Z(27)^9,Z(27)^23,Z(27)^11,Z(27)^14,Z(27)^23,Z(27)^9,Z(27)^14,Z(27)^24,Z(27)^23, Z(27)^17,Z(27)^25,Z(27)^17,Z(27)^10,Z(27)^16,Z(27)^3,Z(27)^19,Z(27)^11,Z(27)^12, Z(27)^20,Z(27)^23,Z(27)^18,Z(27)^23,Z(27)^3,Z(27)^22,Z(27)^10,Z(27)^8,Z(27)^20, Z(27)^16,Z(27)^5,Z(27)^6,Z(27)^24,Z(27)^7,Z(27)^20,Z(27)^14,Z(27)^17,Z(27)^4, Z(27)^2,Z(27)^16,Z(27)^25,Z(27)^21,Z(27)^13,Z(27)^8,Z(27)^12,Z(27)^19,0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^20,Z(27)^11,Z(27)^16,Z(27)^19,Z(27)^9, Z(27)^19,0*Z(27),Z(27)^17,Z(27)^7,Z(27)^20,Z(27)^26,Z(27)^1,Z(27)^6,Z(27)^5, Z(27)^5,Z(27)^13,Z(27)^2,Z(27)^25,Z(27)^8,Z(27)^19,Z(27)^7,Z(27)^14,Z(27)^7, Z(27)^15,0*Z(27),0*Z(27),Z(27)^15,Z(27)^26,Z(27)^25,Z(27)^9,Z(27)^12,Z(27)^24, Z(27)^26,Z(27)^5,Z(27)^12,Z(27)^18,Z(27)^20,Z(27)^19,Z(27)^18,Z(27)^7,Z(27)^3, Z(27)^24,Z(27)^5,Z(27)^4,Z(27)^7,Z(27)^8,Z(27)^26,Z(27)^6,0*Z(27),Z(27)^21,0*Z(27), Z(27)^1,Z(27)^13,Z(27)^23,Z(27)^4,Z(27)^17,Z(27)^18,Z(27)^10,Z(27)^21,Z(27)^17, Z(27)^3,Z(27)^18,Z(27)^20,Z(27)^17,Z(27)^6,Z(27)^25,Z(27)^26,Z(27)^6,Z(27)^18, Z(27)^17,Z(27)^8,Z(27)^19,Z(27)^5,Z(27)^24,Z(27)^3,Z(27)^4,Z(27)^4,Z(27)^9,Z(27)^4, Z(27)^13,Z(27)^19,Z(27)^8,Z(27)^12,Z(27)^24,Z(27)^1,Z(27)^25,Z(27)^22,Z(27)^14, Z(27)^26,Z(27)^7,Z(27)^21,Z(27)^21,Z(27)^2,Z(27)^17,Z(27)^12,Z(27)^15,Z(27)^26, Z(27)^4,Z(27)^7,Z(27)^5,Z(27)^13,Z(27)^22,Z(27)^11,Z(27)^18,0*Z(27),0*Z(27), 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^20,Z(27)^11,0*Z(27),0*Z(27),Z(27)^25,Z(27)^6, Z(27)^20,Z(27)^10,Z(27)^21,Z(27)^18,Z(27)^2,Z(27)^19,Z(27)^7,Z(27)^2,Z(27)^8, Z(27)^12,Z(27)^6,Z(27)^10,Z(27)^14,Z(27)^25,Z(27)^26,Z(27)^8,Z(27)^21,Z(27)^4, Z(27)^14,Z(27)^22,Z(27)^20,Z(27)^2,Z(27)^6,Z(27)^16,Z(27)^5,Z(27)^9,Z(27)^3, Z(27)^22,Z(27)^23,Z(27)^12,Z(27)^26,Z(27)^10,Z(27)^14,Z(27)^5,Z(27)^17,Z(27)^22, Z(27)^22,Z(27)^21,Z(27)^6,Z(27)^24,Z(27)^6,Z(27)^18,Z(27)^18,Z(27)^24,Z(27)^16, Z(27)^21,Z(27)^22,Z(27)^6,Z(27)^22,Z(27)^21,Z(27)^2,Z(27)^17,Z(27)^14,Z(27)^13, Z(27)^2,Z(27)^7,Z(27)^7,Z(27)^21,Z(27)^5,Z(27)^11,Z(27)^8,Z(27)^10,Z(27)^3,Z(27)^22, Z(27)^9,Z(27)^5,Z(27)^14,Z(27)^24,Z(27)^12,Z(27)^23,Z(27)^15,Z(27)^19,Z(27)^23, Z(27)^13,Z(27)^17,Z(27)^6,Z(27)^6,Z(27)^17,Z(27)^1,Z(27)^18,Z(27)^25,Z(27)^8, Z(27)^8,Z(27)^3,Z(27)^22,Z(27)^20,Z(27)^21,Z(27)^6,Z(27)^15,Z(27)^25,Z(27)^2, Z(27)^12,Z(27)^26,Z(27)^21,0*Z(27),Z(27)^2,Z(27)^12,Z(27)^26,Z(27)^6,Z(27)^1, 0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^11,Z(27)^2,Z(27)^13,Z(27)^16,Z(27)^3,Z(27)^19, Z(27)^8,Z(27)^7,0*Z(27),Z(27)^17,Z(27)^11,Z(27)^12,Z(27)^12,Z(27)^13,Z(27)^16, Z(27)^3,Z(27)^4,Z(27)^25,Z(27)^1,Z(27)^22,Z(27)^10,Z(27)^1,Z(27)^19,Z(27)^8, Z(27)^19,Z(27)^14,Z(27)^21,Z(27)^4,Z(27)^5,Z(27)^26,Z(27)^21,Z(27)^22,Z(27)^14, Z(27)^8,Z(27)^12,Z(27)^8,Z(27)^15,Z(27)^6,Z(27)^21,Z(27)^6,Z(27)^26,Z(27)^18, Z(27)^12,Z(27)^11,Z(27)^20,Z(27)^16,Z(27)^2,Z(27)^10,Z(27)^6,Z(27)^20,Z(27)^6, Z(27)^1,Z(27)^23,Z(27)^7,Z(27)^14,Z(27)^13,Z(27)^11,Z(27)^18,Z(27)^1,Z(27)^3, Z(27)^26,Z(27)^2,Z(27)^18,Z(27)^13,Z(27)^2,Z(27)^2,Z(27)^8,Z(27)^23,Z(27)^25, Z(27)^11,Z(27)^20,Z(27)^3,Z(27)^15,Z(27)^14,Z(27)^17,Z(27)^1,Z(27)^16,Z(27)^21, Z(27)^5,Z(27)^10,Z(27)^1,Z(27)^6,Z(27)^23,Z(27)^20,Z(27)^12,Z(27)^14,Z(27)^24, Z(27)^4,0*Z(27),Z(27)^15,Z(27)^5,Z(27)^18,Z(27)^13,Z(27)^23,Z(27)^21,Z(27)^8, Z(27)^17,Z(27)^12,Z(27)^4,Z(27)^11,Z(27)^21,Z(27)^25,Z(27)^10,Z(27)^26,Z(27)^12, Z(27)^8,Z(27)^12,Z(27)^18,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^21,Z(27)^12,Z(27)^12,Z(27)^15,Z(27)^14, Z(27)^1,Z(27)^25,Z(27)^5,Z(27)^26,Z(27)^12,Z(27)^3,Z(27)^4,Z(27)^8,Z(27)^25, Z(27)^5,Z(27)^8,Z(27)^24,Z(27)^14,Z(27)^10,Z(27)^24,0*Z(27),Z(27)^2,Z(27)^18, Z(27)^24,Z(27)^23,Z(27)^13,Z(27)^6,Z(27)^1,Z(27)^3,Z(27)^5,Z(27)^5,Z(27)^3,Z(27)^17, Z(27)^8,Z(27)^20,Z(27)^14,Z(27)^5,Z(27)^1,Z(27)^6,Z(27)^5,Z(27)^6,Z(27)^6,Z(27)^6, 0*Z(27),0*Z(27),Z(27)^8,Z(27)^4,Z(27)^18,Z(27)^18,Z(27)^26,Z(27)^8,Z(27)^16, Z(27)^14,Z(27)^20,Z(27)^10,Z(27)^22,Z(27)^13,Z(27)^21,Z(27)^20,Z(27)^26,Z(27)^14, Z(27)^24,Z(27)^16,Z(27)^10,Z(27)^22,Z(27)^5,Z(27)^26,Z(27)^10,Z(27)^10,Z(27)^17, Z(27)^5,Z(27)^3,Z(27)^16,Z(27)^26,Z(27)^18,Z(27)^20,Z(27)^22,Z(27)^7,Z(27)^22, Z(27)^20,Z(27)^7,Z(27)^22,Z(27)^1,Z(27)^18,Z(27)^10,Z(27)^7,Z(27)^8,Z(27)^8, Z(27)^6,Z(27)^20,Z(27)^8,Z(27)^22,Z(27)^12,Z(27)^4,Z(27)^4,Z(27)^3,Z(27)^1,Z(27)^7, Z(27)^15,0*Z(27),Z(27)^11,Z(27)^15,Z(27)^11,Z(27)^3,Z(27)^12,Z(27)^14,Z(27)^1, Z(27)^7,0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^26,Z(27)^17,Z(27)^25,Z(27)^2,Z(27)^8,Z(27)^1, Z(27)^25,Z(27)^16,Z(27)^11,Z(27)^15,Z(27)^8,Z(27)^19,Z(27)^20,Z(27)^2,Z(27)^15, Z(27)^18,Z(27)^13,Z(27)^24,Z(27)^12,0*Z(27),Z(27)^18,Z(27)^24,Z(27)^22,Z(27)^4, Z(27)^7,Z(27)^5,Z(27)^3,Z(27)^13,Z(27)^25,Z(27)^14,Z(27)^19,Z(27)^5,Z(27)^15, Z(27)^19,Z(27)^21,Z(27)^5,Z(27)^6,Z(27)^23,Z(27)^25,Z(27)^1,Z(27)^3,Z(27)^26, Z(27)^24,Z(27)^17,Z(27)^20,Z(27)^7,Z(27)^12,Z(27)^19,Z(27)^24,Z(27)^2,Z(27)^9, Z(27)^25,Z(27)^13,Z(27)^11,Z(27)^4,Z(27)^14,Z(27)^6,Z(27)^17,Z(27)^14,Z(27)^1, Z(27)^5,Z(27)^1,Z(27)^9,Z(27)^22,Z(27)^4,Z(27)^11,Z(27)^25,Z(27)^3,Z(27)^22, Z(27)^24,Z(27)^9,Z(27)^17,Z(27)^9,Z(27)^17,Z(27)^5,Z(27)^10,Z(27)^16,Z(27)^10, Z(27)^19,Z(27)^14,Z(27)^5,Z(27)^4,Z(27)^4,0*Z(27),Z(27)^2,Z(27)^15,Z(27)^15, Z(27)^11,Z(27)^4,Z(27)^22,Z(27)^22,Z(27)^14,Z(27)^1,Z(27)^4,Z(27)^17,Z(27)^16, Z(27)^3,Z(27)^13,Z(27)^3,Z(27)^8,Z(27)^23,Z(27)^2,Z(27)^8,Z(27)^14,Z(27)^10, Z(27)^17,Z(27)^17,Z(27)^12,Z(27)^8,Z(27)^12,0*Z(27),0*Z(27),0*Z(27),0*Z(27), 0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^15,Z(27)^6,0*Z(27),0*Z(27),Z(27)^6,Z(27)^21, Z(27)^14,Z(27)^5,Z(27)^15,Z(27)^14,Z(27)^7,Z(27)^5,Z(27)^12,Z(27)^13,Z(27)^26, Z(27)^15,Z(27)^26,Z(27)^9,Z(27)^23,Z(27)^6,Z(27)^4,Z(27)^13,Z(27)^22,0*Z(27), Z(27)^10,Z(27)^12,Z(27)^7,Z(27)^19,Z(27)^2,Z(27)^12,Z(27)^17,Z(27)^12,Z(27)^9, Z(27)^10,Z(27)^16,Z(27)^22,Z(27)^21,Z(27)^16,Z(27)^19,Z(27)^17,Z(27)^15,Z(27)^14, Z(27)^7,Z(27)^9,Z(27)^11,Z(27)^18,Z(27)^4,Z(27)^10,Z(27)^22,Z(27)^10,Z(27)^8, Z(27)^10,Z(27)^15,Z(27)^1,Z(27)^24,Z(27)^22,Z(27)^1,0*Z(27),Z(27)^17,Z(27)^23, Z(27)^8,Z(27)^25,Z(27)^13,Z(27)^18,Z(27)^7,Z(27)^15,Z(27)^24,Z(27)^3,Z(27)^7, Z(27)^22,Z(27)^15,Z(27)^5,Z(27)^2,Z(27)^21,Z(27)^4,Z(27)^20,Z(27)^22,Z(27)^22, Z(27)^26,Z(27)^17,Z(27)^2,Z(27)^19,Z(27)^2,Z(27)^1,Z(27)^4,Z(27)^23,Z(27)^23, Z(27)^14,Z(27)^23,Z(27)^5,Z(27)^20,Z(27)^18,Z(27)^20,Z(27)^25,Z(27)^17,Z(27)^24, Z(27)^22,Z(27)^24,Z(27)^7,Z(27)^14,Z(27)^14,Z(27)^24,Z(27)^3,Z(27)^26,Z(27)^19, Z(27)^17,Z(27)^5,Z(27)^13,Z(27)^4,Z(27)^17,Z(27)^20,Z(27)^12,0*Z(27),0*Z(27), 0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^15,Z(27)^6,Z(27)^9,Z(27)^12,Z(27)^16,Z(27)^5, Z(27)^5,Z(27)^16,Z(27)^20,Z(27)^16,Z(27)^18,Z(27)^10,Z(27)^8,Z(27)^11,Z(27)^8, Z(27)^26,Z(27)^5,Z(27)^16,Z(27)^14,Z(27)^18,Z(27)^26,Z(27)^5,Z(27)^19,0*Z(27), Z(27)^15,Z(27)^8,Z(27)^4,Z(27)^4,Z(27)^6,Z(27)^23,Z(27)^22,Z(27)^17,Z(27)^6, Z(27)^20,Z(27)^24,Z(27)^22,Z(27)^5,Z(27)^9,Z(27)^20,Z(27)^2,Z(27)^9,Z(27)^7, 0*Z(27),Z(27)^24,Z(27)^25,Z(27)^18,Z(27)^17,Z(27)^26,Z(27)^9,Z(27)^5,Z(27)^1, Z(27)^6,Z(27)^7,Z(27)^19,Z(27)^6,Z(27)^7,Z(27)^4,Z(27)^24,Z(27)^11,Z(27)^2,Z(27)^4, Z(27)^21,Z(27)^5,Z(27)^12,Z(27)^9,Z(27)^13,Z(27)^12,Z(27)^15,Z(27)^9,Z(27)^21, Z(27)^22,Z(27)^14,Z(27)^22,Z(27)^21,Z(27)^20,Z(27)^13,Z(27)^19,Z(27)^6,Z(27)^6, Z(27)^6,Z(27)^8,Z(27)^13,Z(27)^12,Z(27)^9,Z(27)^23,Z(27)^2,Z(27)^9,0*Z(27),Z(27)^11, Z(27)^2,Z(27)^2,Z(27)^22,Z(27)^5,Z(27)^9,Z(27)^14,Z(27)^14,Z(27)^5,Z(27)^6,Z(27)^20, Z(27)^17,Z(27)^8,Z(27)^4,Z(27)^23,Z(27)^10,Z(27)^3,Z(27)^6,Z(27)^10,Z(27)^8, Z(27)^5,Z(27)^8,Z(27)^9,Z(27)^1,0*Z(27),0*Z(27),0*Z(27),0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^8,Z(27)^25,Z(27)^5,Z(27)^8,Z(27)^7,0*Z(27), Z(27)^18,Z(27)^14,Z(27)^10,Z(27)^20,Z(27)^21,Z(27)^13,Z(27)^18,Z(27)^12,Z(27)^22, Z(27)^6,Z(27)^13,Z(27)^1,Z(27)^13,0*Z(27),Z(27)^15,Z(27)^21,Z(27)^5,Z(27)^18, Z(27)^26,Z(27)^17,Z(27)^25,Z(27)^2,Z(27)^11,0*Z(27),Z(27)^26,Z(27)^24,Z(27)^25, Z(27)^10,Z(27)^20,Z(27)^11,Z(27)^14,Z(27)^24,Z(27)^21,Z(27)^24,Z(27)^22,Z(27)^21, Z(27)^16,Z(27)^10,Z(27)^4,Z(27)^9,Z(27)^23,Z(27)^13,Z(27)^18,Z(27)^14,Z(27)^12, Z(27)^6,Z(27)^6,Z(27)^12,Z(27)^24,Z(27)^12,Z(27)^16,Z(27)^11,Z(27)^9,Z(27)^16, Z(27)^20,Z(27)^19,Z(27)^3,Z(27)^23,Z(27)^17,Z(27)^19,Z(27)^23,Z(27)^14,Z(27)^17, Z(27)^15,Z(27)^26,Z(27)^2,Z(27)^12,Z(27)^23,Z(27)^22,Z(27)^2,Z(27)^4,Z(27)^17, Z(27)^19,Z(27)^7,Z(27)^21,Z(27)^22,Z(27)^24,Z(27)^26,Z(27)^17,Z(27)^2,0*Z(27), Z(27)^1,Z(27)^25,Z(27)^5,Z(27)^1,Z(27)^16,Z(27)^1,Z(27)^19,Z(27)^21,Z(27)^17, Z(27)^14,Z(27)^15,Z(27)^18,Z(27)^18,Z(27)^24,0*Z(27),Z(27)^5,Z(27)^10,Z(27)^17, Z(27)^25,Z(27)^1,Z(27)^6,Z(27)^4,Z(27)^8,Z(27)^2,Z(27)^2,Z(27)^4,Z(27)^18,0*Z(27), 0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^17,Z(27)^8,Z(27)^21,Z(27)^24,Z(27)^19, 0*Z(27),Z(27)^6,Z(27)^17,Z(27)^15,Z(27)^18,Z(27)^24,Z(27)^4,Z(27)^17,Z(27)^7, Z(27)^22,Z(27)^12,Z(27)^15,Z(27)^13,Z(27)^19,Z(27)^19,Z(27)^21,Z(27)^12,Z(27)^12, Z(27)^24,Z(27)^9,Z(27)^13,Z(27)^18,Z(27)^2,Z(27)^23,Z(27)^26,Z(27)^10,0*Z(27), Z(27)^8,Z(27)^22,Z(27)^13,Z(27)^11,Z(27)^7,Z(27)^13,Z(27)^25,Z(27)^16,0*Z(27), Z(27)^17,Z(27)^24,Z(27)^23,Z(27)^10,Z(27)^10,Z(27)^17,Z(27)^4,Z(27)^9,Z(27)^3, Z(27)^14,Z(27)^24,Z(27)^19,0*Z(27),Z(27)^19,Z(27)^13,Z(27)^16,Z(27)^2,Z(27)^19, Z(27)^21,Z(27)^6,Z(27)^17,Z(27)^1,Z(27)^5,Z(27)^11,Z(27)^1,Z(27)^4,Z(27)^7,Z(27)^18, Z(27)^22,Z(27)^19,Z(27)^10,Z(27)^8,Z(27)^20,Z(27)^23,Z(27)^25,0*Z(27),Z(27)^5, Z(27)^11,Z(27)^17,Z(27)^20,Z(27)^10,0*Z(27),Z(27)^6,Z(27)^21,Z(27)^4,Z(27)^4, Z(27)^11,Z(27)^26,Z(27)^8,Z(27)^12,Z(27)^25,Z(27)^3,Z(27)^23,Z(27)^2,Z(27)^26, Z(27)^26,Z(27)^2,Z(27)^26,Z(27)^1,Z(27)^13,Z(27)^26,Z(27)^10,Z(27)^12,Z(27)^24, Z(27)^25,Z(27)^18,Z(27)^8,Z(27)^8,Z(27)^21,Z(27)^16,Z(27)^17,Z(27)^9,Z(27)^14, Z(27)^16,Z(27)^1], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^2,Z(27)^19,Z(27)^13,Z(27)^16,Z(27)^2,Z(27)^14, Z(27)^12,Z(27)^7,Z(27)^14,Z(27)^15,Z(27)^2,Z(27)^4,Z(27)^5,Z(27)^19,Z(27)^8, Z(27)^13,Z(27)^5,Z(27)^6,Z(27)^1,Z(27)^23,Z(27)^4,Z(27)^11,Z(27)^13,Z(27)^4, Z(27)^21,0*Z(27),Z(27)^15,Z(27)^21,Z(27)^12,Z(27)^23,Z(27)^17,Z(27)^4,Z(27)^24, Z(27)^22,Z(27)^5,Z(27)^3,Z(27)^26,Z(27)^20,Z(27)^15,Z(27)^5,Z(27)^5,Z(27)^26, Z(27)^24,Z(27)^23,Z(27)^3,Z(27)^18,Z(27)^1,Z(27)^8,0*Z(27),Z(27)^1,Z(27)^21, Z(27)^8,Z(27)^20,Z(27)^24,Z(27)^26,Z(27)^25,0*Z(27),Z(27)^22,Z(27)^15,Z(27)^6, Z(27)^6,Z(27)^22,Z(27)^25,Z(27)^10,Z(27)^18,Z(27)^17,Z(27)^10,Z(27)^17,Z(27)^24, Z(27)^1,Z(27)^11,Z(27)^16,Z(27)^6,Z(27)^20,Z(27)^23,Z(27)^25,Z(27)^16,Z(27)^16, Z(27)^2,Z(27)^25,Z(27)^11,Z(27)^12,Z(27)^23,Z(27)^1,Z(27)^26,Z(27)^8,Z(27)^9, Z(27)^1,Z(27)^10,Z(27)^10,Z(27)^4,Z(27)^16,Z(27)^5,Z(27)^11,Z(27)^13,Z(27)^24, Z(27)^5,Z(27)^24,Z(27)^25,Z(27)^1,Z(27)^23,Z(27)^19,Z(27)^15,Z(27)^3,Z(27)^4, Z(27)^11,Z(27)^11,Z(27)^16,Z(27)^18,Z(27)^20,Z(27)^8,Z(27)^16,Z(27)^22,Z(27)^25, Z(27)^6,Z(27)^17], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^12,Z(27)^3,Z(27)^11,Z(27)^14,Z(27)^25, Z(27)^20,Z(27)^18,Z(27)^10,Z(27)^8,Z(27)^26,Z(27)^21,Z(27)^8,Z(27)^11,Z(27)^20, Z(27)^8,Z(27)^18,Z(27)^13,Z(27)^10,Z(27)^17,Z(27)^14,Z(27)^8,Z(27)^3,Z(27)^15, Z(27)^9,Z(27)^15,Z(27)^6,Z(27)^18,Z(27)^11,Z(27)^4,Z(27)^19,Z(27)^12,Z(27)^17, Z(27)^25,Z(27)^22,Z(27)^4,Z(27)^5,Z(27)^7,Z(27)^16,Z(27)^15,Z(27)^9,Z(27)^14, Z(27)^21,Z(27)^4,Z(27)^19,Z(27)^2,Z(27)^1,Z(27)^16,Z(27)^8,Z(27)^15,Z(27)^8, Z(27)^4,Z(27)^12,Z(27)^4,Z(27)^20,Z(27)^11,Z(27)^12,Z(27)^10,Z(27)^1,Z(27)^10, Z(27)^6,Z(27)^21,Z(27)^16,0*Z(27),Z(27)^14,Z(27)^21,Z(27)^4,Z(27)^22,Z(27)^3, Z(27)^1,Z(27)^25,Z(27)^7,Z(27)^12,Z(27)^26,Z(27)^10,Z(27)^17,Z(27)^19,Z(27)^4, Z(27)^12,Z(27)^1,Z(27)^6,Z(27)^12,Z(27)^3,Z(27)^3,Z(27)^10,Z(27)^11,Z(27)^13, Z(27)^16,Z(27)^22,Z(27)^20,Z(27)^6,Z(27)^13,Z(27)^25,Z(27)^16,Z(27)^12,Z(27)^12, Z(27)^17,Z(27)^23,Z(27)^6,Z(27)^15,Z(27)^11,0*Z(27),Z(27)^21,Z(27)^21,Z(27)^23, Z(27)^18,Z(27)^24,Z(27)^26,Z(27)^24,Z(27)^19,Z(27)^7,Z(27)^22,Z(27)^9,Z(27)^19, Z(27)^4,Z(27)^10,Z(27)^1], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^4,Z(27)^21,Z(27)^9,Z(27)^12,Z(27)^13,Z(27)^18, Z(27)^23,Z(27)^9,Z(27)^3,Z(27)^10,0*Z(27),Z(27)^16,Z(27)^18,Z(27)^10,Z(27)^3, Z(27)^15,Z(27)^18,Z(27)^16,Z(27)^10,Z(27)^7,Z(27)^14,0*Z(27),Z(27)^3,Z(27)^12, Z(27)^7,Z(27)^7,Z(27)^19,Z(27)^14,Z(27)^6,Z(27)^16,Z(27)^9,Z(27)^18,Z(27)^23, Z(27)^5,Z(27)^19,Z(27)^19,Z(27)^25,Z(27)^3,Z(27)^2,Z(27)^1,Z(27)^2,Z(27)^18, Z(27)^25,Z(27)^26,Z(27)^13,Z(27)^12,Z(27)^13,Z(27)^18,Z(27)^7,Z(27)^1,Z(27)^5, Z(27)^7,Z(27)^18,Z(27)^22,Z(27)^20,Z(27)^22,Z(27)^1,Z(27)^17,Z(27)^8,0*Z(27), Z(27)^8,Z(27)^25,Z(27)^13,Z(27)^11,Z(27)^20,Z(27)^14,Z(27)^1,Z(27)^22,Z(27)^23, Z(27)^12,Z(27)^20,Z(27)^3,Z(27)^26,Z(27)^26,Z(27)^11,Z(27)^17,Z(27)^15,Z(27)^15, Z(27)^12,Z(27)^8,Z(27)^14,Z(27)^17,Z(27)^25,Z(27)^2,Z(27)^5,Z(27)^5,Z(27)^19, Z(27)^7,Z(27)^22,Z(27)^8,Z(27)^3,Z(27)^26,Z(27)^15,Z(27)^11,Z(27)^1,Z(27)^24, Z(27)^7,Z(27)^20,Z(27)^14,Z(27)^10,Z(27)^18,Z(27)^9,Z(27)^1,Z(27)^19,Z(27)^25, Z(27)^6,Z(27)^1,Z(27)^24,Z(27)^12,Z(27)^19,0*Z(27),Z(27)^26,Z(27)^23,Z(27)^11, Z(27)^16,Z(27)^23], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^16,Z(27)^7,Z(27)^11,Z(27)^14,Z(27)^23, Z(27)^20,Z(27)^18,Z(27)^14,Z(27)^9,Z(27)^17,Z(27)^2,Z(27)^2,Z(27)^1,Z(27)^8, Z(27)^23,Z(27)^24,Z(27)^10,Z(27)^26,Z(27)^13,Z(27)^18,Z(27)^12,Z(27)^24,Z(27)^9, Z(27)^10,Z(27)^26,Z(27)^4,Z(27)^13,Z(27)^7,Z(27)^19,Z(27)^15,Z(27)^25,Z(27)^14, Z(27)^8,Z(27)^10,0*Z(27),Z(27)^22,Z(27)^25,Z(27)^9,Z(27)^10,Z(27)^5,0*Z(27), Z(27)^22,Z(27)^22,Z(27)^13,Z(27)^24,Z(27)^8,Z(27)^4,Z(27)^22,0*Z(27),Z(27)^6, Z(27)^6,Z(27)^7,Z(27)^15,Z(27)^12,Z(27)^8,Z(27)^24,Z(27)^25,Z(27)^7,Z(27)^20, Z(27)^25,Z(27)^21,Z(27)^25,Z(27)^12,Z(27)^8,Z(27)^10,Z(27)^17,Z(27)^19,Z(27)^6, Z(27)^23,Z(27)^15,Z(27)^9,Z(27)^9,Z(27)^5,Z(27)^26,Z(27)^7,Z(27)^18,Z(27)^19, Z(27)^1,Z(27)^9,Z(27)^12,Z(27)^4,Z(27)^15,Z(27)^11,Z(27)^14,Z(27)^11,Z(27)^17, Z(27)^18,Z(27)^14,Z(27)^2,Z(27)^25,Z(27)^8,Z(27)^24,Z(27)^26,Z(27)^11,Z(27)^15, Z(27)^2,Z(27)^26,Z(27)^6,Z(27)^17,Z(27)^17,Z(27)^12,Z(27)^26,Z(27)^11,Z(27)^22, Z(27)^24,Z(27)^26,Z(27)^7,Z(27)^12,Z(27)^24,Z(27)^23,Z(27)^9,Z(27)^9,Z(27)^10, Z(27)^1,Z(27)^5,Z(27)^15], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^24,Z(27)^15,Z(27)^8,Z(27)^11,Z(27)^5,Z(27)^17, Z(27)^12,Z(27)^3,Z(27)^16,Z(27)^8,Z(27)^15,Z(27)^16,Z(27)^14,Z(27)^5,Z(27)^12, Z(27)^13,Z(27)^2,Z(27)^1,Z(27)^24,Z(27)^16,Z(27)^6,Z(27)^14,Z(27)^12,Z(27)^12, Z(27)^2,Z(27)^15,Z(27)^13,Z(27)^14,Z(27)^17,Z(27)^23,Z(27)^18,Z(27)^17,Z(27)^4, Z(27)^26,Z(27)^26,Z(27)^11,Z(27)^18,Z(27)^12,Z(27)^9,Z(27)^18,Z(27)^13,Z(27)^6, Z(27)^14,Z(27)^5,Z(27)^20,Z(27)^10,Z(27)^7,Z(27)^16,Z(27)^2,Z(27)^1,Z(27)^11, Z(27)^13,Z(27)^16,Z(27)^21,Z(27)^13,Z(27)^4,Z(27)^14,Z(27)^15,Z(27)^12,Z(27)^1, Z(27)^24,Z(27)^16,Z(27)^17,Z(27)^19,Z(27)^8,Z(27)^17,Z(27)^6,Z(27)^26,Z(27)^7, Z(27)^18,Z(27)^4,Z(27)^6,Z(27)^9,Z(27)^20,Z(27)^25,Z(27)^6,Z(27)^14,Z(27)^20, Z(27)^19,Z(27)^6,Z(27)^16,Z(27)^7,Z(27)^24,Z(27)^19,Z(27)^8,Z(27)^20,Z(27)^2, Z(27)^21,Z(27)^22,Z(27)^7,Z(27)^9,Z(27)^3,Z(27)^13,Z(27)^11,Z(27)^6,Z(27)^14, Z(27)^18,Z(27)^10,Z(27)^8,Z(27)^13,Z(27)^6,Z(27)^14,Z(27)^5,Z(27)^12,Z(27)^14, Z(27)^12,Z(27)^15,Z(27)^4,Z(27)^18,Z(27)^24,Z(27)^3,Z(27)^2,Z(27)^26,Z(27)^7, Z(27)^8,Z(27)^19], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^20,Z(27)^11,Z(27)^11,Z(27)^14,Z(27)^21, Z(27)^20,Z(27)^13,Z(27)^20,Z(27)^14,Z(27)^15,Z(27)^1,Z(27)^24,Z(27)^19,Z(27)^17, Z(27)^14,Z(27)^1,Z(27)^24,Z(27)^1,Z(27)^26,Z(27)^2,Z(27)^2,Z(27)^24,Z(27)^8, Z(27)^22,Z(27)^5,Z(27)^23,0*Z(27),Z(27)^15,Z(27)^11,Z(27)^9,Z(27)^23,Z(27)^25, Z(27)^7,Z(27)^23,Z(27)^11,Z(27)^7,Z(27)^22,Z(27)^3,Z(27)^25,Z(27)^15,Z(27)^2, Z(27)^18,Z(27)^8,Z(27)^12,Z(27)^11,Z(27)^22,Z(27)^18,Z(27)^7,Z(27)^9,Z(27)^26, Z(27)^3,Z(27)^20,Z(27)^13,Z(27)^11,Z(27)^18,Z(27)^4,Z(27)^24,Z(27)^9,Z(27)^25, Z(27)^18,Z(27)^10,Z(27)^21,Z(27)^24,Z(27)^19,0*Z(27),Z(27)^8,Z(27)^22,Z(27)^6, Z(27)^4,Z(27)^26,Z(27)^5,Z(27)^23,Z(27)^5,Z(27)^24,Z(27)^13,Z(27)^14,Z(27)^23, Z(27)^26,Z(27)^23,Z(27)^22,Z(27)^18,0*Z(27),Z(27)^18,Z(27)^25,Z(27)^14,Z(27)^25, Z(27)^13,0*Z(27),Z(27)^18,Z(27)^22,Z(27)^24,Z(27)^1,Z(27)^18,Z(27)^18,Z(27)^10, Z(27)^19,Z(27)^3,Z(27)^10,Z(27)^20,Z(27)^21,Z(27)^15,Z(27)^26,Z(27)^15,Z(27)^22, Z(27)^20,Z(27)^6,Z(27)^7,Z(27)^10,Z(27)^26,Z(27)^7,Z(27)^2,Z(27)^19,Z(27)^1, Z(27)^11,Z(27)^1,Z(27)^16], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^21,Z(27)^12,Z(27)^2,Z(27)^5,Z(27)^18,Z(27)^11, Z(27)^7,Z(27)^6,Z(27)^10,Z(27)^3,Z(27)^8,0*Z(27),Z(27)^17,Z(27)^4,Z(27)^19,Z(27)^17, Z(27)^16,Z(27)^18,Z(27)^6,Z(27)^3,Z(27)^21,Z(27)^14,Z(27)^3,0*Z(27),Z(27)^5, Z(27)^18,Z(27)^24,Z(27)^2,Z(27)^2,Z(27)^16,Z(27)^15,Z(27)^20,Z(27)^17,Z(27)^1, Z(27)^18,Z(27)^4,Z(27)^11,Z(27)^3,Z(27)^18,Z(27)^25,Z(27)^11,Z(27)^6,Z(27)^26, Z(27)^6,Z(27)^6,Z(27)^13,Z(27)^8,Z(27)^7,Z(27)^24,Z(27)^15,Z(27)^25,Z(27)^16, Z(27)^17,Z(27)^12,Z(27)^2,Z(27)^12,Z(27)^15,Z(27)^15,Z(27)^15,Z(27)^22,Z(27)^19, Z(27)^21,Z(27)^12,Z(27)^18,Z(27)^8,Z(27)^15,Z(27)^23,Z(27)^10,Z(27)^5,Z(27)^22, 0*Z(27),Z(27)^26,Z(27)^12,Z(27)^22,Z(27)^17,Z(27)^8,Z(27)^20,Z(27)^15,Z(27)^1, Z(27)^14,Z(27)^6,Z(27)^19,Z(27)^4,0*Z(27),Z(27)^21,Z(27)^5,Z(27)^8,Z(27)^22, Z(27)^7,0*Z(27),Z(27)^11,Z(27)^13,Z(27)^10,Z(27)^25,Z(27)^12,Z(27)^5,Z(27)^13, Z(27)^18,Z(27)^2,Z(27)^4,Z(27)^25,Z(27)^18,Z(27)^22,Z(27)^4,Z(27)^19,Z(27)^11, Z(27)^15,Z(27)^15,Z(27)^22,Z(27)^7,Z(27)^5,Z(27)^25,Z(27)^20,Z(27)^6,Z(27)^4, Z(27)^13], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^12,Z(27)^3,Z(27)^17,Z(27)^20,Z(27)^13, Z(27)^26,Z(27)^5,Z(27)^13,Z(27)^21,Z(27)^2,Z(27)^20,Z(27)^11,Z(27)^1,Z(27)^1, Z(27)^11,Z(27)^13,Z(27)^8,Z(27)^18,Z(27)^18,Z(27)^9,Z(27)^14,Z(27)^12,Z(27)^7, Z(27)^16,Z(27)^12,Z(27)^16,Z(27)^23,Z(27)^5,Z(27)^21,Z(27)^13,Z(27)^10,Z(27)^7, Z(27)^25,Z(27)^10,Z(27)^6,Z(27)^4,Z(27)^4,Z(27)^26,Z(27)^23,Z(27)^25,Z(27)^7, Z(27)^13,Z(27)^15,Z(27)^11,Z(27)^13,Z(27)^3,Z(27)^11,Z(27)^14,Z(27)^15,Z(27)^11, Z(27)^2,Z(27)^25,Z(27)^25,Z(27)^13,Z(27)^15,Z(27)^10,Z(27)^23,Z(27)^12,Z(27)^14, Z(27)^8,Z(27)^10,Z(27)^2,Z(27)^12,Z(27)^8,Z(27)^14,Z(27)^23,Z(27)^21,Z(27)^2, Z(27)^1,Z(27)^10,0*Z(27),Z(27)^17,Z(27)^12,Z(27)^16,Z(27)^15,Z(27)^11,Z(27)^3, 0*Z(27),Z(27)^14,Z(27)^26,Z(27)^5,Z(27)^12,Z(27)^20,Z(27)^8,Z(27)^24,Z(27)^18, Z(27)^18,Z(27)^5,Z(27)^21,Z(27)^6,Z(27)^15,Z(27)^19,Z(27)^23,Z(27)^6,Z(27)^5, Z(27)^14,Z(27)^18,Z(27)^11,Z(27)^1,Z(27)^22,0*Z(27),Z(27)^19,Z(27)^5,Z(27)^9, Z(27)^23,Z(27)^1,0*Z(27),Z(27)^19,Z(27)^12,Z(27)^17,Z(27)^5,Z(27)^6,Z(27)^17, Z(27)^4,Z(27)^10,Z(27)^9], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^23,Z(27)^14,Z(27)^3,Z(27)^6,Z(27)^17,Z(27)^12, Z(27)^16,Z(27)^12,Z(27)^20,Z(27)^12,Z(27)^18,Z(27)^3,Z(27)^4,Z(27)^14,Z(27)^20, Z(27)^16,Z(27)^1,Z(27)^11,Z(27)^2,Z(27)^15,Z(27)^14,Z(27)^20,Z(27)^7,Z(27)^2, Z(27)^24,Z(27)^9,Z(27)^12,Z(27)^20,Z(27)^14,Z(27)^19,Z(27)^15,Z(27)^7,Z(27)^26, Z(27)^19,Z(27)^18,Z(27)^17,Z(27)^5,Z(27)^20,Z(27)^18,Z(27)^19,Z(27)^14,Z(27)^26, Z(27)^23,Z(27)^4,0*Z(27),Z(27)^5,Z(27)^6,Z(27)^24,Z(27)^12,Z(27)^5,0*Z(27),Z(27)^23, Z(27)^2,Z(27)^9,Z(27)^23,0*Z(27),Z(27)^6,Z(27)^19,Z(27)^8,Z(27)^17,Z(27)^5,Z(27)^3, Z(27)^17,Z(27)^6,Z(27)^24,Z(27)^17,Z(27)^10,Z(27)^11,Z(27)^15,Z(27)^23,Z(27)^18, Z(27)^23,Z(27)^9,Z(27)^15,Z(27)^16,Z(27)^24,0*Z(27),Z(27)^17,Z(27)^12,Z(27)^1, Z(27)^19,Z(27)^6,Z(27)^17,Z(27)^17,Z(27)^2,Z(27)^14,Z(27)^26,Z(27)^22,0*Z(27), Z(27)^14,Z(27)^12,Z(27)^20,Z(27)^4,Z(27)^7,Z(27)^16,Z(27)^26,Z(27)^20,0*Z(27), Z(27)^19,Z(27)^22,Z(27)^12,Z(27)^19,Z(27)^14,Z(27)^3,Z(27)^25,Z(27)^1,Z(27)^13, Z(27)^20,Z(27)^5,Z(27)^17,Z(27)^17,Z(27)^6,Z(27)^21,Z(27)^8,Z(27)^20,Z(27)^9], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^6,Z(27)^23,Z(27)^8,Z(27)^11,Z(27)^9,Z(27)^17, Z(27)^7,Z(27)^14,Z(27)^25,Z(27)^2,Z(27)^19,Z(27)^11,Z(27)^1,Z(27)^9,Z(27)^14, Z(27)^26,Z(27)^21,Z(27)^15,Z(27)^10,Z(27)^15,Z(27)^25,Z(27)^7,Z(27)^22,Z(27)^13, Z(27)^19,Z(27)^17,Z(27)^19,Z(27)^1,Z(27)^9,Z(27)^9,Z(27)^8,Z(27)^20,Z(27)^25, Z(27)^25,Z(27)^4,Z(27)^12,Z(27)^11,Z(27)^12,Z(27)^12,Z(27)^8,Z(27)^10,Z(27)^16, Z(27)^21,Z(27)^17,Z(27)^10,Z(27)^22,Z(27)^6,Z(27)^17,Z(27)^13,Z(27)^15,Z(27)^23, Z(27)^6,Z(27)^17,Z(27)^21,Z(27)^1,Z(27)^3,Z(27)^12,Z(27)^14,Z(27)^11,0*Z(27), Z(27)^12,Z(27)^2,Z(27)^9,Z(27)^9,Z(27)^22,Z(27)^11,Z(27)^17,Z(27)^19,Z(27)^2, Z(27)^20,Z(27)^10,Z(27)^13,Z(27)^12,Z(27)^26,Z(27)^25,Z(27)^23,Z(27)^18,Z(27)^26, 0*Z(27),Z(27)^19,Z(27)^1,Z(27)^18,Z(27)^22,Z(27)^14,Z(27)^2,Z(27)^24,Z(27)^15, Z(27)^19,Z(27)^12,Z(27)^11,Z(27)^19,Z(27)^26,Z(27)^9,0*Z(27),Z(27)^1,Z(27)^22, Z(27)^26,Z(27)^7,Z(27)^23,Z(27)^20,Z(27)^13,Z(27)^22,Z(27)^19,Z(27)^15,Z(27)^2, Z(27)^24,Z(27)^9,Z(27)^11,Z(27)^10,Z(27)^26,Z(27)^7,Z(27)^12,Z(27)^9,Z(27)^23, Z(27)^10,Z(27)^6], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^11,Z(27)^2,Z(27)^25,Z(27)^2,Z(27)^18,Z(27)^8, Z(27)^20,Z(27)^6,0*Z(27),Z(27)^25,Z(27)^23,Z(27)^21,Z(27)^22,Z(27)^13,Z(27)^13, Z(27)^9,Z(27)^7,Z(27)^2,Z(27)^7,Z(27)^19,Z(27)^15,Z(27)^26,Z(27)^5,Z(27)^2,Z(27)^22, Z(27)^1,Z(27)^24,Z(27)^16,Z(27)^11,Z(27)^25,Z(27)^5,Z(27)^22,Z(27)^22,Z(27)^21, Z(27)^5,Z(27)^10,Z(27)^25,Z(27)^19,Z(27)^1,Z(27)^5,Z(27)^13,Z(27)^2,Z(27)^15, Z(27)^1,Z(27)^25,Z(27)^6,Z(27)^22,Z(27)^21,Z(27)^5,Z(27)^7,Z(27)^7,Z(27)^13, Z(27)^3,Z(27)^25,Z(27)^16,Z(27)^6,Z(27)^23,Z(27)^2,Z(27)^4,Z(27)^7,Z(27)^16, Z(27)^22,Z(27)^17,Z(27)^14,Z(27)^9,Z(27)^23,Z(27)^5,Z(27)^19,Z(27)^24,Z(27)^25, Z(27)^19,Z(27)^18,Z(27)^6,Z(27)^25,Z(27)^19,Z(27)^11,Z(27)^5,Z(27)^9,Z(27)^4, Z(27)^2,Z(27)^11,Z(27)^10,Z(27)^16,Z(27)^20,Z(27)^26,Z(27)^17,Z(27)^21,Z(27)^7, Z(27)^13,Z(27)^11,Z(27)^17,Z(27)^11,Z(27)^17,Z(27)^4,Z(27)^16,Z(27)^12,Z(27)^13, Z(27)^20,Z(27)^2,Z(27)^19,Z(27)^20,Z(27)^15,Z(27)^2,Z(27)^8,Z(27)^9,Z(27)^25, Z(27)^25,Z(27)^12,Z(27)^18,Z(27)^15,Z(27)^17,Z(27)^12,Z(27)^12,Z(27)^20,Z(27)^6, Z(27)^4], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^7,Z(27)^24,Z(27)^22,Z(27)^25,Z(27)^23, Z(27)^5,Z(27)^13,Z(27)^19,Z(27)^17,Z(27)^23,Z(27)^12,Z(27)^14,Z(27)^8,Z(27)^7, Z(27)^2,Z(27)^7,Z(27)^19,Z(27)^20,Z(27)^19,Z(27)^20,Z(27)^18,Z(27)^26,Z(27)^11, Z(27)^12,Z(27)^7,0*Z(27),Z(27)^24,Z(27)^25,Z(27)^17,Z(27)^20,Z(27)^21,Z(27)^14, Z(27)^26,Z(27)^15,Z(27)^19,Z(27)^8,Z(27)^16,Z(27)^5,Z(27)^20,Z(27)^23,Z(27)^6, 0*Z(27),Z(27)^24,Z(27)^17,Z(27)^4,Z(27)^12,Z(27)^10,Z(27)^10,Z(27)^13,Z(27)^15, Z(27)^11,Z(27)^21,Z(27)^11,Z(27)^14,Z(27)^21,Z(27)^8,Z(27)^7,Z(27)^3,Z(27)^24, Z(27)^16,Z(27)^8,Z(27)^6,Z(27)^18,Z(27)^2,Z(27)^18,Z(27)^20,Z(27)^14,Z(27)^20, 0*Z(27),Z(27)^11,Z(27)^23,Z(27)^21,Z(27)^19,Z(27)^16,0*Z(27),Z(27)^18,Z(27)^15, Z(27)^25,Z(27)^16,Z(27)^11,Z(27)^8,Z(27)^8,Z(27)^24,Z(27)^16,Z(27)^5,Z(27)^19, Z(27)^22,Z(27)^12,Z(27)^10,Z(27)^7,Z(27)^9,Z(27)^24,Z(27)^17,Z(27)^9,Z(27)^16, Z(27)^8,Z(27)^9,0*Z(27),Z(27)^13,Z(27)^8,Z(27)^9,Z(27)^10,Z(27)^4,Z(27)^13,Z(27)^1, Z(27)^13,Z(27)^9,Z(27)^16,Z(27)^12,Z(27)^5,Z(27)^15,Z(27)^12,Z(27)^3,Z(27)^10, Z(27)^5,Z(27)^25], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^8,Z(27)^25,Z(27)^3,Z(27)^6,Z(27)^1,Z(27)^12, Z(27)^23,Z(27)^5,0*Z(27),Z(27)^15,Z(27)^6,Z(27)^9,Z(27)^10,Z(27)^12,Z(27)^3, Z(27)^24,Z(27)^9,Z(27)^9,Z(27)^13,0*Z(27),Z(27)^9,Z(27)^9,Z(27)^22,Z(27)^21, Z(27)^24,Z(27)^24,Z(27)^19,Z(27)^19,0*Z(27),0*Z(27),Z(27)^15,Z(27)^9,Z(27)^7, Z(27)^13,Z(27)^15,Z(27)^10,Z(27)^7,Z(27)^4,Z(27)^7,Z(27)^20,Z(27)^3,Z(27)^23, Z(27)^5,Z(27)^20,Z(27)^13,Z(27)^6,Z(27)^14,Z(27)^10,Z(27)^17,Z(27)^17,Z(27)^13, Z(27)^19,Z(27)^4,Z(27)^9,Z(27)^12,Z(27)^5,Z(27)^22,Z(27)^25,Z(27)^16,Z(27)^3, Z(27)^2,Z(27)^24,Z(27)^26,Z(27)^12,Z(27)^15,Z(27)^26,Z(27)^21,Z(27)^7,Z(27)^4, Z(27)^6,Z(27)^1,Z(27)^24,Z(27)^1,Z(27)^6,Z(27)^10,Z(27)^23,Z(27)^25,Z(27)^6, Z(27)^9,Z(27)^9,Z(27)^9,Z(27)^20,Z(27)^4,Z(27)^18,Z(27)^22,Z(27)^2,Z(27)^17, Z(27)^13,Z(27)^19,Z(27)^10,Z(27)^20,Z(27)^12,Z(27)^26,Z(27)^6,Z(27)^26,Z(27)^23, Z(27)^19,Z(27)^24,Z(27)^1,Z(27)^23,Z(27)^5,Z(27)^8,Z(27)^25,Z(27)^18,Z(27)^2, Z(27)^8,Z(27)^24,Z(27)^3,Z(27)^16,Z(27)^3,Z(27)^5,Z(27)^24,Z(27)^20,Z(27)^8, Z(27)^25,Z(27)^20], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^25,Z(27)^16,Z(27)^10,Z(27)^13,Z(27)^19, Z(27)^19,Z(27)^13,Z(27)^25,Z(27)^23,Z(27)^2,Z(27)^1,Z(27)^24,Z(27)^18,Z(27)^12, Z(27)^4,Z(27)^15,Z(27)^13,Z(27)^8,Z(27)^9,Z(27)^14,Z(27)^12,Z(27)^8,Z(27)^6, Z(27)^20,Z(27)^2,Z(27)^4,Z(27)^22,Z(27)^15,0*Z(27),Z(27)^18,Z(27)^11,Z(27)^12, Z(27)^26,Z(27)^16,Z(27)^5,Z(27)^24,Z(27)^18,Z(27)^14,Z(27)^18,Z(27)^26,Z(27)^18, Z(27)^17,Z(27)^18,Z(27)^1,Z(27)^1,0*Z(27),Z(27)^15,0*Z(27),Z(27)^12,Z(27)^10, Z(27)^23,Z(27)^4,Z(27)^6,Z(27)^14,Z(27)^4,Z(27)^22,Z(27)^23,Z(27)^23,Z(27)^4, Z(27)^16,Z(27)^23,Z(27)^23,Z(27)^5,0*Z(27),Z(27)^3,Z(27)^2,Z(27)^7,Z(27)^16, Z(27)^5,Z(27)^18,Z(27)^8,Z(27)^6,0*Z(27),Z(27)^21,Z(27)^25,Z(27)^20,Z(27)^17, Z(27)^11,Z(27)^25,Z(27)^3,Z(27)^3,Z(27)^2,Z(27)^9,Z(27)^18,Z(27)^11,Z(27)^16, Z(27)^11,Z(27)^22,Z(27)^11,Z(27)^9,0*Z(27),Z(27)^13,0*Z(27),Z(27)^18,Z(27)^26, Z(27)^25,Z(27)^13,Z(27)^9,0*Z(27),Z(27)^15,Z(27)^5,Z(27)^14,Z(27)^9,Z(27)^8, Z(27)^3,Z(27)^1,Z(27)^19,Z(27)^12,Z(27)^4,Z(27)^3,Z(27)^13,Z(27)^21,Z(27)^21, Z(27)^3,Z(27)^11,Z(27)^7], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^7,Z(27)^24,Z(27)^4,Z(27)^7,Z(27)^24,Z(27)^13, Z(27)^18,Z(27)^2,Z(27)^2,Z(27)^21,Z(27)^2,Z(27)^2,Z(27)^24,Z(27)^9,Z(27)^25, Z(27)^5,Z(27)^22,Z(27)^22,0*Z(27),Z(27)^25,Z(27)^5,Z(27)^5,Z(27)^6,Z(27)^6,Z(27)^24, Z(27)^14,Z(27)^26,0*Z(27),Z(27)^13,Z(27)^23,Z(27)^19,Z(27)^11,Z(27)^3,Z(27)^6, Z(27)^7,Z(27)^21,Z(27)^6,Z(27)^25,Z(27)^19,Z(27)^17,Z(27)^1,Z(27)^19,Z(27)^13, Z(27)^18,Z(27)^21,0*Z(27),Z(27)^16,Z(27)^13,Z(27)^3,Z(27)^16,Z(27)^15,Z(27)^25, Z(27)^10,Z(27)^6,Z(27)^4,Z(27)^21,Z(27)^8,Z(27)^19,Z(27)^23,Z(27)^23,Z(27)^2, Z(27)^9,Z(27)^2,Z(27)^12,Z(27)^7,Z(27)^15,Z(27)^7,Z(27)^1,Z(27)^1,Z(27)^1,Z(27)^7, Z(27)^6,Z(27)^2,Z(27)^8,Z(27)^15,Z(27)^7,Z(27)^15,Z(27)^15,Z(27)^9,Z(27)^16, Z(27)^1,Z(27)^9,Z(27)^9,Z(27)^23,Z(27)^8,Z(27)^10,Z(27)^18,Z(27)^1,Z(27)^19, Z(27)^11,Z(27)^19,Z(27)^13,Z(27)^15,Z(27)^9,0*Z(27),Z(27)^11,Z(27)^15,Z(27)^5, Z(27)^10,Z(27)^3,Z(27)^14,Z(27)^14,Z(27)^25,Z(27)^25,0*Z(27),Z(27)^22,Z(27)^17, Z(27)^3,Z(27)^9,Z(27)^15,Z(27)^4,Z(27)^21,Z(27)^21,Z(27)^2,Z(27)^5,Z(27)^18], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^10,Z(27)^1,Z(27)^18,Z(27)^21,Z(27)^6,Z(27)^1, Z(27)^16,Z(27)^7,Z(27)^25,Z(27)^17,Z(27)^13,Z(27)^15,Z(27)^23,Z(27)^7,Z(27)^13, Z(27)^16,Z(27)^26,Z(27)^25,Z(27)^3,Z(27)^9,Z(27)^8,Z(27)^20,Z(27)^12,Z(27)^19, Z(27)^4,Z(27)^24,Z(27)^12,Z(27)^1,Z(27)^13,Z(27)^24,Z(27)^16,Z(27)^18,Z(27)^20, Z(27)^2,Z(27)^1,Z(27)^9,Z(27)^15,Z(27)^3,Z(27)^9,Z(27)^25,Z(27)^25,Z(27)^23, Z(27)^1,Z(27)^9,Z(27)^4,Z(27)^25,Z(27)^8,Z(27)^19,Z(27)^13,Z(27)^18,Z(27)^16, Z(27)^15,Z(27)^8,Z(27)^26,0*Z(27),Z(27)^25,Z(27)^23,Z(27)^16,Z(27)^25,Z(27)^6, Z(27)^21,Z(27)^25,Z(27)^17,Z(27)^4,0*Z(27),Z(27)^8,Z(27)^10,Z(27)^25,Z(27)^7, Z(27)^12,Z(27)^23,Z(27)^19,Z(27)^24,Z(27)^21,Z(27)^11,Z(27)^14,Z(27)^7,Z(27)^8, Z(27)^7,Z(27)^2,0*Z(27),Z(27)^23,Z(27)^17,Z(27)^21,Z(27)^7,Z(27)^26,Z(27)^22, Z(27)^5,Z(27)^17,0*Z(27),Z(27)^13,Z(27)^5,Z(27)^10,Z(27)^7,Z(27)^4,Z(27)^26, Z(27)^20,Z(27)^12,Z(27)^3,Z(27)^19,Z(27)^9,Z(27)^19,Z(27)^9,Z(27)^2,Z(27)^24, Z(27)^12,Z(27)^1,Z(27)^14,Z(27)^9,Z(27)^6,Z(27)^12,Z(27)^12,Z(27)^9,Z(27)^6, Z(27)^10,Z(27)^12], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^24,Z(27)^15,Z(27)^2,Z(27)^5,Z(27)^5,Z(27)^11, Z(27)^20,Z(27)^2,Z(27)^24,Z(27)^19,0*Z(27),Z(27)^2,Z(27)^15,Z(27)^11,Z(27)^24, Z(27)^7,Z(27)^16,Z(27)^25,Z(27)^9,Z(27)^11,Z(27)^8,Z(27)^15,Z(27)^3,Z(27)^8, Z(27)^10,Z(27)^6,Z(27)^9,Z(27)^14,Z(27)^26,Z(27)^5,Z(27)^12,Z(27)^6,Z(27)^4, Z(27)^14,Z(27)^18,Z(27)^10,Z(27)^13,Z(27)^1,Z(27)^26,Z(27)^13,Z(27)^19,Z(27)^19, Z(27)^16,Z(27)^16,Z(27)^16,Z(27)^18,Z(27)^17,Z(27)^6,0*Z(27),Z(27)^5,Z(27)^7, Z(27)^12,Z(27)^3,Z(27)^3,Z(27)^5,Z(27)^12,Z(27)^12,Z(27)^26,Z(27)^9,Z(27)^15, Z(27)^3,Z(27)^2,Z(27)^7,Z(27)^8,Z(27)^3,Z(27)^21,Z(27)^9,Z(27)^15,Z(27)^18,Z(27)^10, Z(27)^10,Z(27)^5,Z(27)^26,Z(27)^4,Z(27)^17,Z(27)^12,Z(27)^7,Z(27)^23,Z(27)^13, Z(27)^5,Z(27)^17,Z(27)^10,Z(27)^6,Z(27)^23,Z(27)^23,Z(27)^1,Z(27)^1,Z(27)^15, Z(27)^1,Z(27)^16,Z(27)^24,Z(27)^5,Z(27)^14,Z(27)^23,Z(27)^2,Z(27)^1,Z(27)^1, Z(27)^6,Z(27)^8,Z(27)^19,Z(27)^13,Z(27)^17,Z(27)^5,Z(27)^17,Z(27)^11,Z(27)^23, Z(27)^17,0*Z(27),Z(27)^21,Z(27)^13,Z(27)^16,Z(27)^12,Z(27)^12,Z(27)^12,Z(27)^1, Z(27)^21], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^3,Z(27)^20,Z(27)^4,Z(27)^7,Z(27)^5,Z(27)^13, Z(27)^15,Z(27)^8,Z(27)^5,Z(27)^4,Z(27)^3,Z(27)^9,Z(27)^8,Z(27)^6,0*Z(27),Z(27)^6, Z(27)^19,Z(27)^21,0*Z(27),Z(27)^2,Z(27)^13,Z(27)^16,Z(27)^16,Z(27)^7,Z(27)^5, Z(27)^6,Z(27)^11,Z(27)^23,Z(27)^23,Z(27)^4,Z(27)^23,Z(27)^10,Z(27)^12,Z(27)^22, Z(27)^21,Z(27)^15,Z(27)^17,Z(27)^26,Z(27)^10,Z(27)^18,Z(27)^7,Z(27)^25,Z(27)^19, Z(27)^11,Z(27)^25,Z(27)^7,Z(27)^13,Z(27)^4,Z(27)^7,Z(27)^11,Z(27)^22,Z(27)^14, Z(27)^1,Z(27)^22,Z(27)^6,Z(27)^10,Z(27)^24,Z(27)^18,Z(27)^8,Z(27)^20,Z(27)^8, Z(27)^3,Z(27)^22,Z(27)^14,Z(27)^22,Z(27)^12,Z(27)^11,Z(27)^5,Z(27)^14,Z(27)^11, Z(27)^2,Z(27)^24,Z(27)^6,Z(27)^9,Z(27)^20,Z(27)^7,Z(27)^12,Z(27)^24,Z(27)^23, Z(27)^13,Z(27)^16,Z(27)^23,Z(27)^25,Z(27)^1,Z(27)^10,0*Z(27),Z(27)^1,Z(27)^18, Z(27)^6,Z(27)^9,Z(27)^20,Z(27)^21,Z(27)^14,Z(27)^26,Z(27)^6,Z(27)^9,Z(27)^10, Z(27)^3,Z(27)^26,Z(27)^26,Z(27)^10,Z(27)^16,Z(27)^16,Z(27)^5,Z(27)^2,Z(27)^26, Z(27)^5,Z(27)^25,Z(27)^13,Z(27)^9,Z(27)^22,Z(27)^13,Z(27)^20,Z(27)^9,Z(27)^10, Z(27)^16], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^19,Z(27)^10,Z(27)^23,Z(27)^26,Z(27)^16, Z(27)^6,Z(27)^10,Z(27)^13,Z(27)^13,Z(27)^17,Z(27)^14,Z(27)^5,Z(27)^19,Z(27)^17, Z(27)^3,Z(27)^4,Z(27)^22,Z(27)^18,Z(27)^15,Z(27)^11,Z(27)^24,Z(27)^20,Z(27)^17, Z(27)^19,Z(27)^3,Z(27)^22,Z(27)^22,Z(27)^26,Z(27)^22,Z(27)^13,Z(27)^24,Z(27)^10, Z(27)^22,Z(27)^10,Z(27)^9,Z(27)^25,Z(27)^10,Z(27)^14,Z(27)^20,Z(27)^7,Z(27)^19, Z(27)^1,Z(27)^6,Z(27)^12,Z(27)^23,Z(27)^24,Z(27)^3,Z(27)^7,Z(27)^1,Z(27)^3,Z(27)^9, Z(27)^4,Z(27)^2,Z(27)^8,Z(27)^17,Z(27)^2,Z(27)^21,Z(27)^17,Z(27)^25,Z(27)^2, Z(27)^20,Z(27)^12,Z(27)^21,Z(27)^10,Z(27)^4,Z(27)^26,Z(27)^3,Z(27)^17,Z(27)^19, Z(27)^7,Z(27)^8,Z(27)^1,Z(27)^5,Z(27)^7,Z(27)^6,Z(27)^4,Z(27)^20,Z(27)^16,Z(27)^6, Z(27)^4,Z(27)^14,Z(27)^16,Z(27)^19,Z(27)^16,Z(27)^6,Z(27)^16,Z(27)^2,Z(27)^5, Z(27)^3,Z(27)^26,Z(27)^19,Z(27)^3,Z(27)^2,Z(27)^1,Z(27)^12,Z(27)^17,Z(27)^2, Z(27)^14,Z(27)^21,Z(27)^6,0*Z(27),Z(27)^25,0*Z(27),Z(27)^19,Z(27)^4,Z(27)^20, Z(27)^11,Z(27)^2,Z(27)^20,Z(27)^5,Z(27)^16,Z(27)^18,Z(27)^5,Z(27)^18,Z(27)^12, Z(27)^9], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^4,Z(27)^21,Z(27)^2,Z(27)^5,Z(27)^4,Z(27)^11, Z(27)^18,Z(27)^24,Z(27)^21,Z(27)^20,Z(27)^19,Z(27)^21,Z(27)^8,Z(27)^13,Z(27)^6, 0*Z(27),Z(27)^1,Z(27)^7,0*Z(27),Z(27)^20,Z(27)^15,Z(27)^14,Z(27)^2,Z(27)^7,Z(27)^6, Z(27)^7,Z(27)^21,Z(27)^19,Z(27)^4,Z(27)^14,Z(27)^6,Z(27)^5,Z(27)^18,Z(27)^10, Z(27)^13,Z(27)^4,Z(27)^9,Z(27)^21,Z(27)^12,Z(27)^12,Z(27)^17,Z(27)^15,Z(27)^18, Z(27)^14,Z(27)^4,Z(27)^9,Z(27)^23,Z(27)^23,Z(27)^16,Z(27)^25,Z(27)^25,Z(27)^2, Z(27)^17,Z(27)^14,Z(27)^4,Z(27)^12,Z(27)^4,Z(27)^12,Z(27)^24,Z(27)^20,Z(27)^23, Z(27)^23,Z(27)^11,0*Z(27),Z(27)^14,Z(27)^3,0*Z(27),Z(27)^24,Z(27)^8,Z(27)^24, Z(27)^3,Z(27)^21,Z(27)^5,Z(27)^2,Z(27)^25,Z(27)^23,Z(27)^24,Z(27)^18,Z(27)^3, Z(27)^17,Z(27)^14,Z(27)^11,Z(27)^4,Z(27)^26,Z(27)^24,Z(27)^1,Z(27)^5,Z(27)^20, Z(27)^14,Z(27)^21,Z(27)^19,Z(27)^23,Z(27)^6,Z(27)^14,Z(27)^16,Z(27)^24,Z(27)^10, Z(27)^24,0*Z(27),0*Z(27),Z(27)^2,Z(27)^22,Z(27)^18,Z(27)^10,Z(27)^16,Z(27)^21, 0*Z(27),Z(27)^3,Z(27)^19,Z(27)^4,Z(27)^8,Z(27)^3,Z(27)^17,Z(27)^2,Z(27)^12,0*Z(27)], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^26,Z(27)^17,Z(27)^18,Z(27)^21,Z(27)^26, Z(27)^1,Z(27)^10,Z(27)^16,Z(27)^6,Z(27)^9,Z(27)^16,Z(27)^23,Z(27)^12,Z(27)^13, Z(27)^14,Z(27)^21,Z(27)^5,Z(27)^23,0*Z(27),Z(27)^5,Z(27)^14,Z(27)^8,Z(27)^11, Z(27)^8,Z(27)^6,Z(27)^6,Z(27)^3,Z(27)^26,Z(27)^11,Z(27)^17,Z(27)^10,Z(27)^9, Z(27)^10,Z(27)^15,Z(27)^22,Z(27)^18,Z(27)^16,Z(27)^21,Z(27)^14,Z(27)^4,Z(27)^2, Z(27)^12,Z(27)^2,Z(27)^26,Z(27)^14,Z(27)^8,Z(27)^12,Z(27)^13,Z(27)^18,0*Z(27), Z(27)^1,Z(27)^8,Z(27)^2,0*Z(27),Z(27)^12,0*Z(27),Z(27)^7,Z(27)^12,Z(27)^26,Z(27)^5, Z(27)^15,Z(27)^1,Z(27)^3,Z(27)^5,Z(27)^25,Z(27)^24,Z(27)^9,Z(27)^2,Z(27)^6,0*Z(27), Z(27)^6,Z(27)^11,Z(27)^8,Z(27)^5,Z(27)^10,Z(27)^4,Z(27)^16,Z(27)^13,Z(27)^20, Z(27)^17,Z(27)^8,Z(27)^21,Z(27)^14,0*Z(27),Z(27)^7,Z(27)^16,Z(27)^6,Z(27)^8, Z(27)^7,Z(27)^24,0*Z(27),Z(27)^9,Z(27)^8,Z(27)^19,0*Z(27),Z(27)^13,Z(27)^2,Z(27)^11, Z(27)^10,Z(27)^11,Z(27)^11,Z(27)^12,Z(27)^8,Z(27)^11,Z(27)^7,Z(27)^1,Z(27)^9, Z(27)^4,Z(27)^22,0*Z(27),Z(27)^2,Z(27)^22,Z(27)^12,Z(27)^8,Z(27)^4,Z(27)^24], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^16,Z(27)^7,Z(27)^23,Z(27)^26,Z(27)^23, Z(27)^6,Z(27)^21,Z(27)^1,Z(27)^11,Z(27)^13,Z(27)^8,Z(27)^21,Z(27)^23,Z(27)^6, Z(27)^21,Z(27)^12,Z(27)^9,Z(27)^12,Z(27)^13,Z(27)^13,Z(27)^8,Z(27)^9,Z(27)^4, Z(27)^18,Z(27)^4,Z(27)^6,Z(27)^25,Z(27)^24,Z(27)^9,Z(27)^2,Z(27)^13,Z(27)^26, Z(27)^16,Z(27)^5,Z(27)^26,Z(27)^12,Z(27)^22,Z(27)^4,Z(27)^22,Z(27)^1,Z(27)^19, Z(27)^6,Z(27)^24,0*Z(27),Z(27)^14,Z(27)^1,Z(27)^8,Z(27)^6,Z(27)^24,Z(27)^24, Z(27)^26,Z(27)^22,Z(27)^26,Z(27)^21,Z(27)^8,0*Z(27),Z(27)^3,Z(27)^9,Z(27)^5, Z(27)^16,Z(27)^6,Z(27)^22,Z(27)^21,Z(27)^8,Z(27)^1,Z(27)^5,Z(27)^9,Z(27)^22, Z(27)^14,Z(27)^12,Z(27)^1,Z(27)^26,Z(27)^13,Z(27)^22,Z(27)^5,Z(27)^7,Z(27)^8, Z(27)^14,Z(27)^21,0*Z(27),Z(27)^22,Z(27)^25,Z(27)^15,Z(27)^23,Z(27)^14,Z(27)^3, Z(27)^23,Z(27)^26,Z(27)^5,Z(27)^15,Z(27)^14,Z(27)^11,Z(27)^11,Z(27)^5,Z(27)^17, Z(27)^3,Z(27)^17,Z(27)^6,Z(27)^7,Z(27)^14,Z(27)^12,Z(27)^15,Z(27)^18,Z(27)^25, Z(27)^23,Z(27)^20,Z(27)^6,Z(27)^13,0*Z(27),Z(27)^18,Z(27)^2,Z(27)^17,Z(27)^6, Z(27)^11,0*Z(27),Z(27)^21], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^13,Z(27)^4,0*Z(27),0*Z(27),Z(27)^15,0*Z(27), Z(27)^20,Z(27)^19,0*Z(27),Z(27)^21,Z(27)^18,Z(27)^8,Z(27)^2,Z(27)^23,Z(27)^13, Z(27)^17,0*Z(27),Z(27)^4,Z(27)^8,Z(27)^17,Z(27)^12,Z(27)^2,Z(27)^5,Z(27)^15, Z(27)^4,Z(27)^5,Z(27)^6,Z(27)^8,Z(27)^11,Z(27)^13,Z(27)^12,Z(27)^10,Z(27)^5, Z(27)^13,Z(27)^16,0*Z(27),Z(27)^10,Z(27)^23,Z(27)^8,Z(27)^25,Z(27)^9,Z(27)^2, Z(27)^7,Z(27)^7,Z(27)^11,Z(27)^16,Z(27)^9,Z(27)^19,Z(27)^12,Z(27)^19,Z(27)^6, Z(27)^23,Z(27)^20,Z(27)^14,0*Z(27),Z(27)^10,Z(27)^1,Z(27)^26,Z(27)^25,Z(27)^16, Z(27)^5,Z(27)^2,Z(27)^5,Z(27)^13,Z(27)^7,Z(27)^1,Z(27)^23,Z(27)^23,Z(27)^3,Z(27)^20, Z(27)^5,Z(27)^18,Z(27)^22,Z(27)^21,Z(27)^18,Z(27)^20,Z(27)^5,Z(27)^3,Z(27)^1, Z(27)^12,Z(27)^19,Z(27)^10,Z(27)^5,Z(27)^16,Z(27)^16,Z(27)^19,Z(27)^12,Z(27)^20, Z(27)^3,Z(27)^24,Z(27)^19,Z(27)^22,Z(27)^11,Z(27)^23,Z(27)^9,Z(27)^25,Z(27)^20, Z(27)^6,Z(27)^4,Z(27)^8,Z(27)^6,Z(27)^17,Z(27)^8,Z(27)^1,Z(27)^18,Z(27)^26,Z(27)^24, Z(27)^20,Z(27)^25,Z(27)^8,Z(27)^24,Z(27)^3,Z(27)^11,Z(27)^15,Z(27)^20,Z(27)^20], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^2,Z(27)^19,Z(27)^16,Z(27)^19,Z(27)^6,Z(27)^25, Z(27)^8,Z(27)^7,Z(27)^11,Z(27)^13,Z(27)^22,Z(27)^26,Z(27)^8,Z(27)^14,Z(27)^23, Z(27)^18,Z(27)^25,Z(27)^4,Z(27)^24,Z(27)^1,0*Z(27),Z(27)^25,Z(27)^7,Z(27)^15, Z(27)^18,Z(27)^8,0*Z(27),Z(27)^16,Z(27)^1,Z(27)^3,Z(27)^26,Z(27)^24,Z(27)^19, Z(27)^13,Z(27)^18,Z(27)^22,Z(27)^19,Z(27)^15,Z(27)^13,0*Z(27),Z(27)^11,Z(27)^25, Z(27)^8,Z(27)^23,Z(27)^5,Z(27)^10,Z(27)^1,Z(27)^17,Z(27)^4,Z(27)^10,Z(27)^19, Z(27)^26,Z(27)^26,Z(27)^9,Z(27)^17,Z(27)^14,Z(27)^7,Z(27)^4,Z(27)^1,Z(27)^5, Z(27)^9,Z(27)^2,Z(27)^5,Z(27)^17,Z(27)^26,Z(27)^19,Z(27)^15,Z(27)^15,Z(27)^20, Z(27)^7,Z(27)^22,Z(27)^8,Z(27)^11,Z(27)^14,Z(27)^25,Z(27)^6,Z(27)^13,Z(27)^3, Z(27)^17,Z(27)^1,Z(27)^6,Z(27)^26,Z(27)^26,Z(27)^17,Z(27)^9,Z(27)^20,Z(27)^7, Z(27)^4,Z(27)^25,Z(27)^21,Z(27)^9,Z(27)^7,Z(27)^2,Z(27)^7,Z(27)^1,Z(27)^6,Z(27)^4, Z(27)^7,Z(27)^2,Z(27)^19,Z(27)^3,Z(27)^12,Z(27)^24,Z(27)^3,Z(27)^21,0*Z(27), Z(27)^14,0*Z(27),Z(27)^20,Z(27)^12,Z(27)^26,Z(27)^26,Z(27)^23,Z(27)^6,Z(27)^26, Z(27)^23], [0*Z(27),0*Z(27),0*Z(27),0*Z(27),Z(27)^6,Z(27)^23,Z(27)^23,Z(27)^26,Z(27)^12, Z(27)^6,Z(27)^3,Z(27)^20,Z(27)^24,Z(27)^2,Z(27)^15,Z(27)^11,Z(27)^4,Z(27)^18, Z(27)^26,Z(27)^18,Z(27)^7,Z(27)^2,Z(27)^5,Z(27)^22,Z(27)^23,Z(27)^10,0*Z(27), Z(27)^16,Z(27)^2,Z(27)^15,Z(27)^12,Z(27)^4,0*Z(27),Z(27)^6,Z(27)^8,Z(27)^14, Z(27)^23,Z(27)^8,Z(27)^20,Z(27)^22,Z(27)^21,Z(27)^25,Z(27)^13,Z(27)^14,Z(27)^6, Z(27)^5,Z(27)^23,Z(27)^13,Z(27)^16,Z(27)^24,Z(27)^14,Z(27)^5,Z(27)^14,Z(27)^8, Z(27)^8,Z(27)^13,Z(27)^6,Z(27)^13,Z(27)^9,Z(27)^17,Z(27)^23,Z(27)^24,Z(27)^25, Z(27)^20,Z(27)^14,Z(27)^2,Z(27)^9,Z(27)^16,Z(27)^2,Z(27)^6,Z(27)^6,Z(27)^5,Z(27)^16, Z(27)^10,Z(27)^12,Z(27)^2,Z(27)^20,Z(27)^16,Z(27)^22,Z(27)^21,Z(27)^18,Z(27)^19, 0*Z(27),Z(27)^4,Z(27)^24,Z(27)^10,Z(27)^3,Z(27)^25,Z(27)^7,Z(27)^11,Z(27)^16, Z(27)^20,Z(27)^21,0*Z(27),Z(27)^11,Z(27)^3,Z(27)^15,Z(27)^17,Z(27)^25,Z(27)^13, Z(27)^5,Z(27)^16,Z(27)^18,Z(27)^15,Z(27)^17,Z(27)^26,Z(27)^12,Z(27)^23,Z(27)^4, Z(27)^9,Z(27)^3,Z(27)^6,Z(27)^18,Z(27)^23,Z(27)^9,Z(27)^15,Z(27)^22,Z(27)^22, Z(27)^24,Z(27)^21] ];