/* www-ATLAS of Group Representations. HS:2 represented as 22 x 22 matrices over GF(2). */ F:=GF(2); x:=CambridgeMatrix(1,F,22,[ "0010101101000011011011", "0100101101001110001110", "0000111100001100100110", "0011010001000010101000", "0000010100000101111010", "1100000101011101001111", "0110000001010000101101", "1100111100010011000001", "1100001011011101111000", "1010101100000011011011", "0101101010010101000010", "1101111110100001111100", "1011000110100111101000", "1010110001000111101100", "0011001011100010100010", "1010101000001001011000", "0101101111111110100001", "0111001010111001000011", "0010100000001100011001", "0000110001001110111101", "0000000101001011000001", "0100110101011100001010"]); y:=CambridgeMatrix(1,F,22,[ "1110001111011000000101", "1010111011111100010110", "1000111011111011011010", "0001001110100111111111", "1101101000011011000100", "1101011101011100010001", "1100100011110000100010", "0100010110101000101000", "1111101110000110011101", "1111000000000110100001", "1110110010011000010101", "1001000011101001101010", "1101010010011111101000", "0010110011101001101100", "1001101011110110111000", "0111010001011010111110", "0001010011110001011101", "0100010110010010011101", "0101000010100010000100", "0001010011100110001110", "1110111101101100000111", "0010010011011011110011"]); G:=MatrixGroup<22,F|x,y>; print "Group G is HS:2 < GL(22,GF(2))";