/* HS presented on its standard generators. */ G:=Group; // R1, R2 and R3 are redundant, but appear to be useful. // Both of these subgroups have index 100 (and are equal). M1:=sub; M1a:=sub; // This subgroup centralises x and has index 5775. H:=sub; // This subgroup is cyclic of order 11. K:=sub; /* Demonstrations of correctness. Rels x^2=y^5=(x*y)^11=1 demonstrate that G is perfect and generated by conjugates of x. H visibly centralises x. Coset enumeration over H establishes the index 5775, the same as in the image HS. The double cover 2"HS is excluded since x*y^2 is in class 10B and lifts to elements of order 20 in 2"HS [and we have the relation (x*y^2)^10 = 1]. K = is cyclic of order 11 (or trivial), so enumerating the 4032000 cosets of this subgroup is also a way of establishing the order of G. This enumeration is very hard without the redundant relations. The following should work: // Without the redundant relations. Index(G,H:Print:=2,Hard:=true,Grain:=5*10^5,CosetLimit:=15*10^6); Index(G,M1:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=10000); Index(G,M1a:Print:=2,Hard:=true,Grain:=5*10^5,CosetLimit:=2*10^6); Index(G,K:Print:=2,Hard:=true,Grain:=5*10^5,CosetLimit:=53*10^6); // With the redundant relations R1+R2+R3. Index(G,H:Print:=2,Hard:=true,Grain:=5*10^5,CosetLimit:=10^6); Index(G,M1:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=10000); Index(G,M1a:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=10000); Index(G,K:Print:=2,Hard:=true,Grain:=5*10^5,CosetLimit:=6*10^6); */