/* www-ATLAS of Group Representations. 3.Fi22:2 represented as 54 x 54 matrices over GF(2). */ F:=GF(2); x:=CambridgeMatrix(1,F,54,[ "110010000111010100100001010001011011110101011000110101", "011001000101111110000100110110110100011100100011011100", "111011010010001000001010010101010110011010010100101010", "110110001010000111000100110010100111111000000100101110", "001111010011000010000000010101111101011001100101010011", "111011011001111101111101100100001101100000000010100111", "111000011010010111011000011001011010100011001110110111", "110000110101000110100111100100000011001011111001000010", "011101111111111100000100111001110001101111110001110110", "001101011101000011000110000000110100010100100100000000", "010101100000101100111101010001100001001010000111010000", "001111110100000100111100111100010011011011011101110101", "000101011100101111011101100110010010100011100001111001", "100111111010000111101110000001101100110110110100001100", "010111011111101000101101110101001101010111000100000010", "110100111101000100110100010000000111000010000011010000", "000100001100100011100000111000110110011010110100000011", "110010010100010001010101111011111110001100000010100000", "010011000000101010110010111001101100001001001110001011", "101011110100110110101001100111011001001100110101101101", "011000111000011000001110101011110100001000101110000101", "100100000110001111001001110011001101101010010001001111", "011110001110111001011000001111001011011000101001001111", "111111001011001000110110010101010010001111011111000011", "101011111110110111111111010010010000000001110100111110", "111010010100000001110011001001000011010000111010100011", "010001101000010110111001001111001111000111001010110000", "011011010001110000011110000111011010000111001100101111", "010101110110111010101010001111110001110011000000001101", "010001100001010001100110111001000101110110001111111010", "000001011000111110101010110111110011001000011001001000", "001111100010100101010110011010110010110100010111111101", "000101000000001001011101010011111101101011101010010110", "001000001110101011110001110101110100010000000100011110", "110110001011011010101010110111011101010010001000101001", "011001100111011011100100110100100001111101001110011010", "000101010110111111111111100011111001100100101001100110", "100001001100000111010110110101110001011100111010001010", "101010110001011001011011110011010000000100101110110010", "000100010101001011111001011001101000010111001011011010", "111010010010011010010111110111011011000101000011000000", "011011011111001010001001010100010111001010110000110010", "100001011001110111101101101111111110011111011101100011", "101010101000110011000010010010001110000101000001101011", "110100111011101010110100101110111101111111111011111111", "010111000010000000000001000110110101110101001011011001", "000111100110111110000101101010111001000011011001111100", "010011000110110001110110010111110100011110110110101000", "100100000110001111001101110011001101101010010001101111", "010001111010101010101110100101100101000011111101010010", "001110110011101101000111000010011001100111000010111011", "010110001000000010111100010011001100111001100001100111", "111111010101011111100110011100001011111011011001001111", "100100011000011000011100111010010100011110010111000000"]); y:=CambridgeMatrix(1,F,54,[ "110010001001011111101100101001100011011101001111001000", "011001000011100000100100011001001101010111101010110010", "110000010101001000101110000010111001111111000100010111", "111010100010001000110011110010011001000011011010101101", "000111011100000011011011100110100010101011011011111001", "111010010010010100100011100000000110010001110111110110", "010100010000000111011100110000010110001111000011101101", "011000001001101011011010110111100111110011110010000101", "111011000011111001100111000110111010110001111000100010", "110100111011010010010110000000101010000000000010001101", "000101000010001101110001111000111011111001111011111010", "100110110111010011011111001100010000100101110010000100", "111111111100101001010110111100101111001101011010101000", "001111001110101000010010111100001001100000000110101111", "000110101000100101110101101010000111100011011111001001", "111100100111101000111010010001110101001011000000100001", "110010100110011010010010101011010101100110101000001011", "100101001100011110101001110111101101100111011000111010", "011000110101010111100111111010101010111001110000100111", "010111111000111010001111001110000100010000111010111101", "000100010110000011110100001100101010000011110000111110", "101110100000001100101110001001111101010010001000010010", "001011000111001010010110111111011101110101111011000001", "011110001011010100010001100111100101110110111110100100", "100000101100110011101010000000010101011010111001011111", "010111110101000101100010101101111001111101010100000100", "110011010101011000011100011111101010011100101101000111", "001110110100100111101010011001010111101110111111100011", "111101110110001000111101100100001101011101110011100000", "001001101100101010111001011110110101110101111001001110", "111010100101110010100001000011111100110010100101000000", "011100110010001111100000011110101010101000001101100011", "110011111111011101011011001100111100000110001001011110", "110100010011101011100101001000100000111110100110000000", "001001001001000100001011100000011100111101110100110111", "000001100001111000010001111101011100010100110111101101", "011010100101000100110000000001101110111100111001011001", "101001110111100010111101110110000010111011101000001100", "110110110000000110101010001001111010110100100111000010", "010001000100101001110111010100101101110111010001000000", "001111101011110110001101110000100011000111100101111000", "000011011101101110111100100110010000111001110100010010", "101001001001001111111011010100101010001111111101110110", "111101111011010000110100110100000111110110101110110100", "010011011100011010001010011101001001101011101010010001", "000010010011111111101011100100001010011000001000010111", "110101100110101000010101010011111010011110100111110101", "101001100101000110001111101000001100111001000000001111", "110100100010010101100001111001111011110110011010100001", "111110001000101011111101110011111100110010111110000001", "001011011000101100001011110110011101101011000001101101", "000001011111001000000111011001100011001001111100001010", "111000100010001011100010110001000001101001110011010101", "001010010100111100100101001110111100111101101100100000"]); G:=MatrixGroup<54,F|x,y>; print "Group G is 3.Fi22:2 < GL(54,GF(2))";