/* 4b"M20 as 4 x 4 matrices over Z[i]. Absolutely irreducible representation. Schur Index 1. SEED: Nonzero v negated by x and x^(yxy) where = S4. v has 4 x 40 = 160 images under G; has 40 images under G. BASIS: All in v^G. Possible matrix entries for any element of the group: The 9 elements of {0,1,-1,i,-i,1+i,1-i,-1+i,-1-i} only. The possible norms are in {0,1,2} only. Average number of nonzero entries for any element of the group: 11 + 1/5 (11.2; 70% exactly). Entry Av/Mat %Av/Mat 0 4.8 30 1 1.6 10 -1 1.6 10 i 1.6 10 -i 1.6 10 1+i 1.2 7.5 1-i 1.2 7.5 -1+i 1.2 7.5 -1-i 1.2 7.5 Norm 0 4.8 30 Norm 1 6.4 40 Norm 2 4.8 30 nonzero 11.2 70 */ F:=QuadraticField(-1); G:=MatrixGroup<4,F|[ -1,0,0,0, -1,i,-i+1,0, -1,0,-i-1,1, -1,0,-i,0] ,\[ 0,1,0,0, 0,0,1,0, 1,0,0,0, 0,0,0,1] >; // Complex conjugates of x and y. xc:=GL(4,F)![Conjugate(u):u in Eltseq(x)]; yc:=GL(4,F)![Conjugate(u):u in Eltseq(y)]; // Forms: B1 (Hermitian). // B1 (Hermitian form): Determinant 1. B1:=MatrixAlgebra(F,4)![ 2,i,-i,1, -i,2,i,1, i,-i,2,1, 1,1,1,2]; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,4)!Eltseq(y^3);