/* www-ATLAS of Group Representations. L3(7).2 represented as 20 x 20 matrices over GF(7). */ F:=GF(7); x:=CambridgeMatrix(1,F,20,[ "01000000000000000000", "10000000000000000000", "00010000000000000000", "00100000000000000000", "00000010000000000000", "00000001000000000000", "00001000000000000000", "00000100000000000000", "00000000000100000000", "00000000000001000000", "00000000000000010000", "00000000100000000000", "00000000000000000010", "00000000010000000000", "25350565641222614056", "00000000001000000000", "03020464025320053056", "55234261105566140113", "00000000000010000000", "32266242366242061034"]); y:=CambridgeMatrix(1,F,20,[ "44000000000000000000", "00100000000000000000", "00001000000000000000", "00000100000000000000", "16503000000000000000", "00000000100000000000", "00000000010000000000", "00000000001000000000", "00000000000010000000", "00000000000000100000", "00000000000000001000", "00000000000000000100", "00010000000000000000", "00000000000000000001", "25511145560211206641", "40051101166046634511", "46111614344314356445", "01053135200111106641", "43000341432023202246", "36231622645015056250"]); G:=MatrixGroup<20,F|x,y>; print "Group G is L3(7).2 < GL(20,GF(7))";