/* www-ATLAS of Group Representations. L3(7) represented as 57 x 57 matrices over GF(3). */ F:=GF(3); x:=CambridgeMatrix(1,F,57,[ "010112201211110010200112210200022000211101010211000221102", "112210101220212212221210121221202120221210011102110102000", "220210102200022102112020021201200002220012020010111200111", "022012011211110210221111112212012221222220220122000112200", "021212201020011110021201222210022112111220010202020212202", "220012020021220201220112211020121200220220222002120200200", "120022210110220221001202212112200210111221122111112002022", "112112221110222110112000112102111020110212011110000222221", "022011222210221010112021200102021102101201212110222221211", "121101200221111221002100112020021211111210200012121212120", "210122200100011210220202110010100111210200101102112101010", "022211100101112002201111101100110100021222212221121011102", "210212212000010012112122002001122102100222121111220100021", "212202110212021202222001120211022221000012021222211112022", "221002210001122112022222112120001001201112211200122021202", "000221001121211210002111220000010102121022221020111002211", "120112022220202121101100200210012121101000220100122111202", "110121222020011222001020201200000220101201001010021201210", "221100111122012120121111112002112222012020021110102221220", "212200221200201022101110120020122000101121112100212221012", "201010220011210210110102201211122220100201022110211012202", "200221022212222221020112011002102021120100112010122122012", "100020002011201122221000012120101111110110022020211010000", "122222200002201112021112012110222001111222112000020210112", "012001201211020112011001110012102002121011022102022211010", "022220010020001011101122222122222011110222211112122112121", "222220000200021222011222111201122210012010100202021002011", "210000122121002200122102121012120200201001120222122212120", "102221201121210222100210112111010011201222002220111202122", "110102101210010111122122021001101101000022202222022210102", "121110120201100202200021022220002201022200011022111012210", "122122002020121120010200101012201201002022011210000202002", "102121101112022120000021021012022021202210021212100002212", "221002102000200211101012001102010001122212221102020121001", "021111011011020100000110020221111112211101112212222110222", "202010022001112022020220221121121112000021000202110202002", "010201101010221222121212212122002000111120002112021110101", "010121212022010122212221100212022200221101102000012101100", "111002212212010110012221112221211200211100000000202020101", "202022021222121011102110220112002112022011002002002212002", "110111201121100122201102000110112212010021020120001221010", "201021020100100211000020101012021001121020001111222101011", "102221201220011201100201021200112020210120021101021210012", "012111101200000012121121200000112111221020222210120220202", "112100121210200210000201002212010222022001102011001002221", "001020121022121011020111122212200011220221120220220220212", "020201120102201001202101001012010222020102110010211021110", "120010201122002201120111100102220002012201121122000022100", "022221110220220121111021220012202002102202012200211221020", "221101001112200220210111220200222211002112211222212100021", "020220210012110100100012001002020201110120110021022201020", "021220110221020111221222202111221022010002222011120102120", "200110001110221221102010121110220102020201021212212210102", "010120121200220021011022002120211112220011000200020021012", "222001022011010100000121121022112221202120202211211022010", "211000101111112121212101221121101100022121221200002011220", "200120011222220201012122121201100102202011111101002120222"]); y:=CambridgeMatrix(1,F,57,[ "212012022221100222001011211201101222002020211101220101002", "001100120212101001000022111210222020102212120211010111000", "120012210011211210121110100220010112110200001101022120202", "122222212212001211020121010222001111101110121020202221011", "022112022122021101200002001002001111111220012120100122211", "020211012211010120000112021222200210220021000010120210002", "011111002210101222112021120012010211000122222120010020111", "001212110121222102002210112112122011120221221120101211012", "020202011222122012212022012022001201111010122102000020120", "000221012020012111102000022020122121112212212121111021102", "012010010101020011012022112120121020022210000020200011210", "012202120121210220022202120000220122220211100112212221212", "021111011110122011122201010011111120021011101002122201111", "002121220200200101112022101000022021221112020111012120112", "111202122212211122001022112222010122002122112002112211122", "120102001111002222220012212220010121220102102222000120221", "221121001012222121020200201012122212011012011110001010100", "001011022201002021122100111202110121201121102012112100212", "211110000012200212200011121002012122000010102220122102202", "110202001012011202202202101220121222200022212222120020022", "120001221121210020011200220110100221011222221010112201221", "022020211201220221122000110110101010121010101212000010220", "021111122100101102100100211100010011102012022110020220100", "022102220212202000001212211122000112111222012020111111201", "110200010212002102102021220220211001201200012120200201110", "112110012122200002010221020212111001100122011221200200001", "212221102000010002020212022102000210220201001002102220110", "212222020202102112011120101020020211202021012012022120100", "100010120212012222111210110001020022221102001121021100020", "222202110012222200002021121000120110110201220001120122000", "120221200000121221202021122210020101111100111122201012201", "200010211020211121222221110222200222022001121010221221000", "121111212212020010020111002100102210012010021001211121111", "110220221220221202100022001210100001200011002202112112202", "012110212112202002012200020211000210200011212220110212022", "020021120211022110012110221220020122101121122212111111111", "112112200100000200222201020120211121112210102212210001112", "110101020122022210110111002112120110111100222001102112212", "211222102012200201001101121222120010001122011210220222222", "101021120222112112120111111022212121211022011101101102210", "200210022020112102120101010120102120121111101000220012200", "120011112100212210002210111200022220122111012111000012112", "102202121111001002200012010220210101122011121120111101202", "020110002121201202101010202001210001120001012112112000200", "000201212022101102220000120221212011212100221101010222101", "012121120110102112012211011102010020202100100210020010220", "201222010022211002100010021202120100202011210011220221021", "202000211110021001011221010111010022011020120112002011102", "220222002210202120201020021002011210012202200220222200000", "021110121010121011210022001102211012011101120120002210101", "121001112101122200222022102022000122121202122220022210220", "021220010011120100220211110202222001011001221220010001220", "202100112101111100000000211120000120102020111101221020212", "111220010211110001202210102010220121120021012111122201000", "202222200122212012202111111000110001111222222110001112120", "000110202021211212000022020100102021100022221020021212101", "222102202221211002002020010000002221111111011020111002021"]); G:=MatrixGroup<57,F|x,y>; print "Group G is L3(7) < GL(57,GF(3))";