/* www-ATLAS of Group Representations. 3.L3(4) represented as 18 x 18 matrices over GF(2). */ F:=GF(2); x:=CambridgeMatrix(1,F,18,[ "100000000000000000", "010000000000000000", "000100000000000000", "001000000000000000", "000000100000000000", "000000010000000000", "000010000000000000", "000001000000000000", "000000000001000000", "000000000000010000", "000000000000000100", "000000001000000000", "011000001001111011", "000000000100000000", "010000111010001101", "000000000010000000", "011111000111010111", "000011111001000001"]); y:=CambridgeMatrix(1,F,18,[ "010000000000000000", "001000000000000000", "000010000000000000", "000001000000000000", "100000000000000000", "000000001000000000", "000000000100000000", "000000000010000000", "000000000000100000", "000000000000001000", "000000000000000010", "000000000000000001", "000100000000000000", "001011011000010100", "010110111101001011", "110100000001100101", "111111011010100010", "000000000001000000"]); G:=MatrixGroup<18,F|x,y>; print "Group G is 3.L3(4) < GL(18,GF(2))";