/* www-ATLAS of Group Representations. L3(3):2 represented as 11 x 11 matrices over GF(13). */ F:=GF(13); x:=CambridgeMatrix(3,F,11,\[ 0,1,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1, 9,4,10,6,3,7,8,5,3,1,10, 0,0,0,0,0,0,0,0,1,0,0]); y:=CambridgeMatrix(3,F,11,\[ 0,0,1,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0, 1,2,1,1,0,0,0,0,0,0,0, 0,12,12,12,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0, 9,7,4,6,1,1,12,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,1,0, 2,2,11,11,1,0,12,0,1,0,0, 7,3,11,12,2,0,0,1,11,0,0, 12,7,9,9,9,9,0,0,0,0,12]); G:=MatrixGroup<11,F|x,y>; print "Group G is L3(3):2 < GL(11,GF(13))";