/* www-ATLAS of Group Representations. L3(3) represented as 27 x 27 matrices over GF(3). */ F:=GF(3); x:=CambridgeMatrix(1,F,27,[ "100000000000000000000000000", "010000000000000000000000000", "022000000000002000000000000", "000000000000000100000000000", "000000100000000000000000000", "000220000000000002000000000", "000010000000000000000000000", "000000000010000000000000000", "010010010100100000000102000", "020000000200200000000000000", "000000010000000000000000000", "000000000001000000000000000", "000000000000100000000000000", "000000000000010000000000000", "000000000000001000000000000", "000100000000000000000000000", "200100020020011120000000100", "000002200000000200000000000", "000020020000000000000200000", "000000000000000000000010000", "000000100010000000120000002", "000000200020000000200000000", "000000000000000000010000000", "000000002200000000200000000", "000000000000000000000000100", "000000000002000000000000220", "000000000000000000002220000"]); y:=CambridgeMatrix(1,F,27,[ "022000000000002000000000000", "000100000000000000000000000", "000010000000000000000000000", "000000000010000000000000000", "200000020020000000000000000", "000000001000000000000000000", "000000000100000000000000000", "000000000000001000000000000", "000000000002000000020020000", "000000000000010000000000000", "010000000000000000000000000", "000002000000000000000002020", "000000000000000100000000000", "000000100000000000000000000", "000000000000000001000000000", "000000000000000000100000000", "000000000000000000010000000", "000000010000000000000000000", "000000000000100000000000000", "000000000000000000000001000", "000000000001000000000000000", "000000000000000000000000100", "000000000000000000000000010", "000000000000000010000000000", "002000000000000002000000002", "000000002000000020002000000", "000020020000000000000200000"]); G:=MatrixGroup<27,F|x,y>; print "Group G is L3(3) < GL(27,GF(3))";