# Character: X8 # Comment: Galois conjugate of X.7 # Ind: 1 # Ring: C # Sparsity: 74% # Checker result: pass # Conjugacy class representative result: pass local a, A, b, B, c, C, w, W, i, result, delta, idmat; result := rec(); w := E(3); W := E(3)^2; a := E(5)+E(5)^4; A := -1-a; # b5, b5* b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7** c := E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9; C := -1-c; # b11, b11** i := E(4); result.comment := "L28 as 9 x 9 matrices\n"; result.generators := [ [[1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0], [0,0,1,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0], [0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1], [E(7)+2*E(7)^2+3*E(7)^3+3*E(7)^4+2*E(7)^5+E(7)^6,E(7)+2*E(7)^2+3*E(7)^3+3*E(7)^4+2*E(7)^5+E(7)^6, E(7)+2*E(7)^2+4*E(7)^3+4*E(7)^4+2*E(7)^5+E(7)^6,E(7)+2*E(7)^2+4*E(7)^3+4*E(7)^4+2*E(7)^5+E(7)^6, E(7)+2*E(7)^2+3*E(7)^3+3*E(7)^4+2*E(7)^5+E(7)^6,E(7)+2*E(7)^2+3*E(7)^3+3*E(7)^4+2*E(7)^5+E(7)^6, E(7)+2*E(7)^2+3*E(7)^3+3*E(7)^4+2*E(7)^5+E(7)^6,-1,E(7)+2*E(7)^2+3*E(7)^3+3*E(7)^4+2*E(7)^5+E(7)^6 ], [0,0,0,0,0,0,1,0,0]] , [[0,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0], [0,0,0,1,0,0,0,0,0], [-2*E(7)^2-2*E(7)^3-2*E(7)^4-2*E(7)^5,-E(7)^2-2*E(7)^3-2*E(7)^4-E(7)^5, -2*E(7)^2-3*E(7)^3-3*E(7)^4-2*E(7)^5,-2*E(7)^2-3*E(7)^3-3*E(7)^4-2*E(7)^5, -2*E(7)^2-2*E(7)^3-2*E(7)^4-2*E(7)^5,-E(7)-2*E(7)^2-3*E(7)^3-3*E(7)^4-2*E(7)^5-E(7)^6, -E(7)^2-2*E(7)^3-2*E(7)^4-E(7)^5,E(7)+E(7)^6,E(7)-E(7)^2-2*E(7)^3-2*E(7)^4-E(7)^5+E(7)^6 ], [E(7)^2+E(7)^3+E(7)^4+E(7)^5,E(7)^3+E(7)^4,E(7)^2+E(7)^3+E(7)^4+E(7)^5, E(7)^2+E(7)^3+E(7)^4+E(7)^5,E(7)^2+E(7)^3+E(7)^4+E(7)^5,-1,E(7)^3+E(7)^4, -E(7)-E(7)^6,-E(7)-E(7)^6]]]; return result;