/* L2(32) as 33 x 33 monomial matrices over Z[z31]. Representation 33a. Absolutely irreducible representation. Schur Index 1 [despite being written over a field of dimension 2 over the field of character values (which is Q(y31))]. SEED: Nonzero v such that v.x = v and v.y*x*y*x*y^-1*x*y*x*y^-1*x*y = z31^5*v where = 2^5:31. v has 31 x 33 = 1023 images under G; has 33 images under G. BASIS: NSB([x,y,y^2]) with above v. Possible matrix entries are in {0,1,z31^j:1<=j<=30} (all of norm 1). Number of nonzero entries for any element of the group: 33 (33 exactly; about 3.030%). Entry Av/Mat %Av/Mat 0 1056 96.970 [96+32/33] nonzero 33 3.030 [3+1/33] 1 1.065 [1+2/31] 0.098 [100/1023] z31^j 1.065 [1+2/31] 0.098 [100/1023] [holds for each j.] */ F:=CyclotomicField(31); // F:=GF(61^2);z31:=w^120; G:=MatrixGroup<33,F|[ 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31^26,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31^26,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31^5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31^30,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31^30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31,0] ,[ 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31^12,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31^19,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31^19,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,z31^12,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0] >; // Forms: B1 (Symmetric); B2 (Hermitian). // B1 (Symmetric form): Determinant has norm 2^2475. B1:=MatrixAlgebra(F,33)![ 0,1,1,1,1,z31^4,z31^10,z31^10,z31^4,z31^4,z31^10,z31^10,z31^4,z31^20,z31^13,z31^8,z31^13,z31^13,z31^8,z31^13,z31^20,z31^20,z31^13,z31^13,z31^20,z31^12,z31^24,z31^12,z31^24,z31^26,z31^25,z31^6,z31^7, 1,0,1,z31^10,z31^4,1,z31^4,1,z31^10,z31^13,z31^13,z31^8,z31^20,z31^4,z31^20,z31^10,z31^8,z31^10,z31^13,z31^4,z31^13,z31^1,z31^1,z31^24,z31^12,z31^20,z31^13,z31^25,z31^7,z31^12,z31^26,z31^24,z31^6, 1,1,0,z31^4,z31^10,z31^10,1,z31^4,1,z31^20,z31^8,z31^13,z31^13,z31^13,z31^4,z31^13,z31^10,z31^8,z31^10,z31^20,z31^4,z31^12,z31^24,z31^1,z31^1,z31^1,z31^1,z31^26,z31^6,z31^25,z31^12,z31^7,z31^24, 1,z31^10,z31^4,0,1,z31^13,z31^13,z31^8,z31^20,1,z31^4,1,z31^10,z31^1,z31^18,z31^30,z31^1,z31^24,z31^15,z31^15,z31^12,z31^4,z31^8,z31^10,z31^13,z31^25,z31^7,z31^20,z31^13,z31^27,z31^11,z31^5,z31^25, 1,z31^4,z31^10,1,0,z31^20,z31^8,z31^13,z31^13,z31^10,1,z31^4,1,z31^12,z31^15,z31^15,z31^24,z31^1,z31^30,z31^18,z31^1,z31^13,z31^10,z31^8,z31^4,z31^26,z31^6,z31^1,z31^1,z31^13,z31^24,z31^23,z31^8, z31^4,1,z31^10,z31^13,z31^20,0,z31^13,1,z31^8,z31^18,z31^1,z31^15,z31^12,1,z31^1,z31^4,z31^30,1,z31^24,z31^10,z31^15,z31^29,z31^25,z31^6,z31^26,z31^4,z31^8,z31^11,z31^25,z31^20,z31^27,z31^13,z31^5, z31^10,z31^4,1,z31^13,z31^8,z31^13,0,z31^20,1,z31^1,z31^30,z31^24,z31^15,z31^18,1,z31^1,z31^4,z31^15,1,z31^12,z31^10,z31^25,z31^7,z31^16,z31^27,z31^29,z31^25,z31^27,z31^5,z31^11,z31^20,z31^25,z31^13, z31^10,1,z31^4,z31^8,z31^13,1,z31^20,0,z31^13,z31^15,z31^24,z31^30,z31^1,z31^10,z31^12,1,z31^15,z31^4,z31^1,1,z31^18,z31^27,z31^16,z31^7,z31^25,z31^13,z31^10,z31^24,z31^8,z31^1,z31^13,z31^1,z31^23, z31^4,z31^10,1,z31^20,z31^13,z31^8,1,z31^13,0,z31^12,z31^15,z31^1,z31^18,z31^15,z31^10,z31^24,1,z31^30,z31^4,z31^1,1,z31^26,z31^6,z31^25,z31^29,z31^27,z31^16,z31^13,z31^23,z31^24,z31^1,z31^8,z31^1, z31^4,z31^13,z31^20,1,z31^10,z31^18,z31^1,z31^15,z31^12,0,z31^13,1,z31^8,z31^29,z31^29,z31^5,z31^25,z31^6,z31^27,z31^9,z31^26,1,z31^30,1,z31^15,z31^11,z31^25,z31^4,z31^8,z31^28,z31^19,z31^4,z31^14, z31^10,z31^13,z31^8,z31^4,1,z31^1,z31^30,z31^24,z31^15,z31^13,0,z31^20,1,z31^25,z31^5,z31^7,z31^7,z31^16,z31^26,z31^6,z31^27,z31^18,z31^4,z31^15,z31^10,z31^27,z31^5,z31^29,z31^25,z31^21,z31^10,z31^12,z31^26, z31^10,z31^8,z31^13,1,z31^4,z31^15,z31^24,z31^30,z31^1,1,z31^20,0,z31^13,z31^27,z31^6,z31^26,z31^16,z31^7,z31^7,z31^5,z31^25,z31^10,z31^15,z31^4,z31^18,z31^24,z31^8,z31^13,z31^10,z31^14,1,z31^22,z31^2, z31^4,z31^20,z31^13,z31^10,1,z31^12,z31^15,z31^1,z31^18,z31^8,1,z31^13,0,z31^26,z31^9,z31^27,z31^6,z31^25,z31^5,z31^29,z31^29,z31^15,1,z31^30,1,z31^13,z31^23,z31^27,z31^16,z31^2,z31^23,1,z31^9, z31^20,z31^4,z31^13,z31^1,z31^12,1,z31^18,z31^10,z31^15,z31^29,z31^25,z31^27,z31^26,0,z31^29,z31^13,z31^5,1,z31^6,z31^8,z31^9,z31^19,z31^27,z31^23,z31^13,1,z31^30,z31^19,z31^14,z31^4,z31^28,z31^8,z31^4, z31^13,z31^20,z31^4,z31^18,z31^15,z31^1,1,z31^12,z31^10,z31^29,z31^5,z31^6,z31^9,z31^29,0,z31^25,z31^13,z31^27,1,z31^26,z31^8,z31^11,z31^25,z31^12,z31^18,z31^19,z31^27,z31^28,z31^4,z31^19,z31^4,z31^14,z31^8, z31^8,z31^10,z31^13,z31^30,z31^15,z31^4,z31^1,1,z31^24,z31^5,z31^7,z31^26,z31^27,z31^13,z31^25,0,z31^7,z31^20,z31^16,1,z31^6,z31^3,z31^22,z31^8,z31^24,z31^18,z31^4,z31^10,z31^26,z31^29,z31^21,z31^25,z31^12, z31^13,z31^8,z31^10,z31^1,z31^24,z31^30,z31^4,z31^15,1,z31^25,z31^7,z31^16,z31^6,z31^5,z31^13,z31^7,0,z31^26,z31^20,z31^27,1,z31^27,z31^5,z31^30,z31^23,z31^3,z31^22,z31^21,z31^12,z31^10,z31^29,z31^26,z31^25, z31^13,z31^10,z31^8,z31^24,z31^1,1,z31^15,z31^4,z31^30,z31^6,z31^16,z31^7,z31^25,1,z31^27,z31^20,z31^26,0,z31^7,z31^13,z31^5,z31^23,z31^30,z31^5,z31^27,z31^10,z31^15,1,z31^2,z31^13,z31^14,z31^10,z31^22, z31^8,z31^13,z31^10,z31^15,z31^30,z31^24,1,z31^1,z31^4,z31^27,z31^26,z31^7,z31^5,z31^6,1,z31^16,z31^20,z31^7,0,z31^25,z31^13,z31^24,z31^8,z31^22,z31^3,z31^23,z31^30,z31^14,z31^22,1,z31^13,z31^2,z31^10, z31^13,z31^4,z31^20,z31^15,z31^18,z31^10,z31^12,1,z31^1,z31^9,z31^6,z31^5,z31^29,z31^8,z31^26,1,z31^27,z31^13,z31^25,0,z31^29,z31^18,z31^12,z31^25,z31^11,z31^15,1,z31^23,z31^9,z31^27,z31^2,z31^16,1, z31^20,z31^13,z31^4,z31^12,z31^1,z31^15,z31^10,z31^18,1,z31^26,z31^27,z31^25,z31^29,z31^9,z31^8,z31^6,1,z31^5,z31^13,z31^29,0,z31^13,z31^23,z31^27,z31^19,z31^18,z31^12,z31^2,1,z31^23,z31^27,z31^9,z31^16, z31^20,z31^1,z31^12,z31^4,z31^13,z31^29,z31^25,z31^27,z31^26,1,z31^18,z31^10,z31^15,z31^19,z31^11,z31^3,z31^27,z31^23,z31^24,z31^18,z31^13,0,z31^5,1,z31^9,z31^19,z31^14,1,z31^30,z31^29,z31^3,z31^3,z31^9, z31^13,z31^1,z31^24,z31^8,z31^10,z31^25,z31^7,z31^16,z31^6,z31^30,z31^4,z31^15,1,z31^27,z31^25,z31^22,z31^5,z31^30,z31^8,z31^12,z31^23,z31^5,0,z31^26,1,z31^21,z31^12,z31^3,z31^22,z31^30,z31^9,z31^24,z31^27, z31^13,z31^24,z31^1,z31^10,z31^8,z31^6,z31^16,z31^7,z31^25,1,z31^15,z31^4,z31^30,z31^23,z31^12,z31^8,z31^30,z31^5,z31^22,z31^25,z31^27,1,z31^26,0,z31^5,1,z31^2,z31^10,z31^15,z31^15,z31^12,z31^21,z31^11, z31^20,z31^12,z31^1,z31^13,z31^4,z31^26,z31^27,z31^25,z31^29,z31^15,z31^10,z31^18,1,z31^13,z31^18,z31^24,z31^23,z31^27,z31^3,z31^11,z31^19,z31^9,1,z31^5,0,z31^2,1,z31^18,z31^12,z31^28,z31^22,z31^15,z31^10, z31^12,z31^20,z31^1,z31^25,z31^26,z31^4,z31^29,z31^13,z31^27,z31^11,z31^27,z31^24,z31^13,1,z31^19,z31^18,z31^3,z31^10,z31^23,z31^15,z31^18,z31^19,z31^21,1,z31^2,0,z31^5,z31^3,z31^9,1,z31^29,z31^30,z31^3, z31^24,z31^13,z31^1,z31^7,z31^6,z31^8,z31^25,z31^10,z31^16,z31^25,z31^5,z31^8,z31^23,z31^30,z31^27,z31^4,z31^22,z31^15,z31^30,1,z31^12,z31^14,z31^12,z31^2,1,z31^5,0,z31^9,z31^27,z31^3,z31^30,z31^22,z31^24, z31^12,z31^25,z31^26,z31^20,z31^1,z31^11,z31^27,z31^24,z31^13,z31^4,z31^29,z31^13,z31^27,z31^19,z31^28,z31^10,z31^21,1,z31^14,z31^23,z31^2,1,z31^3,z31^10,z31^18,z31^3,z31^9,0,z31^5,z31^30,z31^30,z31^2,1, z31^24,z31^7,z31^6,z31^13,z31^1,z31^25,z31^5,z31^8,z31^23,z31^8,z31^25,z31^10,z31^16,z31^14,z31^4,z31^26,z31^12,z31^2,z31^22,z31^9,1,z31^30,z31^22,z31^15,z31^12,z31^9,z31^27,z31^5,0,1,z31^2,z31^23,z31^23, z31^26,z31^12,z31^25,z31^27,z31^13,z31^20,z31^11,z31^1,z31^24,z31^28,z31^21,z31^14,z31^2,z31^4,z31^19,z31^29,z31^10,z31^13,1,z31^27,z31^23,z31^29,z31^30,z31^15,z31^28,1,z31^3,z31^30,1,0,z31^30,z31^5,z31^2, z31^25,z31^26,z31^12,z31^11,z31^24,z31^27,z31^20,z31^13,z31^1,z31^19,z31^10,1,z31^23,z31^28,z31^4,z31^21,z31^29,z31^14,z31^13,z31^2,z31^27,z31^3,z31^9,z31^12,z31^22,z31^29,z31^30,z31^30,z31^2,z31^30,0,1,z31^5, z31^6,z31^24,z31^7,z31^5,z31^23,z31^13,z31^25,z31^1,z31^8,z31^4,z31^12,z31^22,1,z31^8,z31^14,z31^25,z31^26,z31^10,z31^2,z31^16,z31^9,z31^3,z31^24,z31^21,z31^15,z31^30,z31^22,z31^2,z31^23,z31^5,1,0,z31^23, z31^7,z31^6,z31^24,z31^25,z31^8,z31^5,z31^13,z31^23,z31^1,z31^14,z31^26,z31^2,z31^9,z31^4,z31^8,z31^12,z31^25,z31^22,z31^10,1,z31^16,z31^9,z31^27,z31^11,z31^10,z31^3,z31^24,1,z31^23,z31^2,z31^5,z31^23,0]; // B2 (Hermitian form): Identity matrix, Determinant 1. B2:=MatrixAlgebra(F,33)!(x*x); // Centralising algebra: Scalars only. C1:=B2;