# Character: X2 # Comment: perm rep on 992 pts # Ind: 1 # Ring: Z # Sparsity: 72% # Maximum absolute entry: 18 local b, B, w, W, i, result, delta, idmat; result := rec(); w := E(3); W := E(3)^2; b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7** i := E(4); result.comment := "L232 as 31 x 31 matrices\n"; result.generators := [ [[0,-1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,1,0, 0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-2,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,-1,0,-1,-1,0,0,-1,1,0,-1,1, 1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,-1,0,-1,0,0,0,0,-1,1,0,0,0,0,0,0,0,-1,0,0,1,0,0,1 ], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,2,2,-2,1,-1,0,0,-1,1,0,1,0,0,0,-1,0,0,0,1,0,-1,0,0,1,1,-1,0,-1, 1,1], [-2,2,1,-2,1,0,1,1,-1,1,-1,1,1,0,0,-1,2,0,-1,0,0,-1,0,0,0,1,0,0,0, 2,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,-1,-1,0,0,0,0,0,0,0,0,0,-1,0,-1,1,-1,0,1,1,-1,1,-1,-1,0,-1,0,0, 0,0,0], [-2,1,1,-2,2,0,-1,0,-1,1,1,1,0,0,-1,-1,2,0,0,0,-1,-1,0,0,1,1,-1,0, 0,2,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0], [1,-3,0,1,-2,-1,0,-2,1,-2,0,-1,1,1,1,0,-2,-1,-1,-2,0,0,0,0,1,0,-1, 1,1,-3,0], [2,-3,-1,2,-2,0,0,-1,2,-2,0,-2,0,0,1,1,-2,0,0,-1,1,1,0,0,-1,-1,0,0, 0,-3,-1], [-1,-3,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-2,-1,0,0,0,0,0,-1,1,1,-1, 0], [-2,4,2,-3,2,0,1,1,-2,2,-1,2,1,0,0,-2,2,0,-1,1,0,-2,0,0,1,2,-1,0,-1, 3,2], [-1,0,-1,-1,1,1,0,0,-1,1,0,0,0,0,-1,0,2,0,0,-1,-1,0,0,0,0,0,0,0,1, 1,0], [0,1,0,-1,1,0,1,0,0,0,-1,0,0,0,-1,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,1,0 ]] , [[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,-1,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,1,0,0 ], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,0,1,1,0,0,0,0,0,0,0,0,-1,0,0,1,1,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,1,1,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0], [-1,0,1,1,0,0,0,-1,-1,0,0,0,1,-1,0,-1,2,0,-1,-2,1,-1,1,0,-1,1,0,1, -1,-1,0], [-1,0,1,-1,1,0,0,0,-1,1,0,1,0,0,0,-1,1,0,0,0,-1,0,0,0,1,1,-1,0,0,1, 1], [-3,5,2,-6,3,0,1,1,-3,4,-1,3,0,1,-2,-2,2,-1,0,3,-2,-2,0,-1,3,2,-2, 0,0,6,3], [-2,2,2,-3,1,0,1,0,-2,2,-1,1,1,0,0,-1,1,0,-1,1,0,-1,0,-1,1,2,-1,0, 0,2,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,4,2,-5,2,1,1,0,-3,3,-1,2,0,1,-1,-2,1,-1,0,2,-1,-2,0,-1,2,2,-2, 0,0,4,3], [1,-2,-2,4,-1,1,0,1,1,-1,0,-2,0,-2,1,1,1,1,0,-2,1,1,0,1,-3,-1,3,0, 0,-2,-2], [-2,2,2,-4,1,0,0,0,-2,2,0,2,0,1,-1,-1,1,-1,0,1,-1,-1,0,-1,2,2,-2,0, 0,2,2], [4,-10,-5,11,-7,0,0,-2,6,-7,1,-6,-1,-2,3,4,-3,1,0,-6,3,3,0,1,-5,-4, 4,1,1,-10,-5], [-9,15,7,-17,12,2,0,2,-11,12,0,10,1,2,-5,-7,9,-1,0,7,-6,-5,1,-1,7, 7,-6,-1,-1,16,8], [-5,8,4,-9,5,0,3,1,-5,5,-2,4,1,1,-2,-3,3,-1,-1,4,-2,-3,0,-2,4,4,-3, 0,0,8,5], [-2,5,3,-5,3,0,-1,1,-3,3,1,3,0,1,-1,-2,2,0,0,3,-1,-1,0,0,2,2,-2,-1, -1,4,2], [7,-17,-6,18,-13,-1,0,-4,10,-12,0,-10,0,-2,5,5,-7,0,-1,-10,6,4,0,1, -7,-6,5,3,1,-18,-7]]]; result.centralizeralgebra := [ ]; return result;