/* www-ATLAS of Group Representations. L2(23).2 represented as 22 x 22 matrices over GF(2). */ F:=GF(2); x:=CambridgeMatrix(1,F,22,[ "0000000000001110101001", "0000000000010011100011", "0000000000011101010100", "0000000000011001100110", "0000000000000111011101", "0000000000001111000111", "0000000000000010010111", "0000000000010010011001", "0000000000001010101011", "0000000000001011100100", "0000000000010011001110", "1011110011100000000000", "0111011011100000000000", "1111101110000000000000", "1101011110100000000000", "1101010010000000000000", "1110111101100000000000", "0101111111100000000000", "0101111000000000000000", "1001101011100000000000", "0111101100000000000000", "0110101110100000000000"]); y:=CambridgeMatrix(1,F,22,[ "0011010100100000000000", "1011111010100000000000", "0000000001000000000000", "0000000010000000000000", "0001000000000000000000", "0011000011000000000000", "0101111001100000000000", "0011110101000000000000", "0000100000000000000000", "0011110000000000000000", "1011110111100000000000", "0000000000010101011011", "0000000000000000101100", "0000000000000000000001", "0000000000010000101000", "0000000000001111010101", "0000000000010111010011", "0000000000000011110010", "0000000000000010000000", "0000000000011101000110", "0000000000011010100111", "0000000000010110011000"]); G:=MatrixGroup<22,F|x,y>; print "Group G is L2(23).2 < GL(22,GF(2))";