/* www-ATLAS of Group Representations. L2(23) represented as 11 x 11 matrices over GF(23). */ F:=GF(23); x:=CambridgeMatrix(3,F,11,\[ 0,1,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0, 5,5,15,15,21,21,22,22,22,22,22]); y:=CambridgeMatrix(3,F,11,\[ 22,1,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0, 2,22,1,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0, 0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1, 12,3,3,14,0,17,1,15,15,22,15, 22,11,5,8,4,1,6,17,11,7,15, 0,0,0,0,0,1,0,0,0,0,0]); G:=MatrixGroup<11,F|x,y>; print "Group G is L2(23) < GL(11,GF(23))";