# Character: X5 # Comment: perm rep on 253 pts (cosets of S4) # Ind: 1 # Ring: Z # Sparsity: 69% # Maximum absolute entry: 7 # Checker result: pass # Conjugacy class representative result: pass local a, A, b, B, c, C, w, W, i, result, delta, idmat; result := rec(); w := E(3); W := E(3)^2; a := E(5)+E(5)^4; A := -1-a; # b5, b5* b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7** c := E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9; C := -1-c; # b11, b11** i := E(4); result.comment := "L223 as 22 x 22 matrices\n"; result.generators := [ [[0,0,0,0,0,0,-1,0,0,-1,-2,0,0,0,1,-1,0,0,-1,-1,-1,0], [0,0,0,-1,0,-1,-1,-1,0,0,0,0,1,1,2,-1,-1,-1,-1,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [-2,0,1,0,-1,0,-2,0,0,-2,-3,0,0,0,2,-2,0,0,-2,-2,-2,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [3,2,-3,2,3,0,4,2,1,5,6,1,-3,-1,-7,4,2,2,6,3,3,0], [-2,-1,2,-1,-2,0,-2,-1,-1,-3,-4,0,3,1,5,-3,-2,-1,-4,-2,-2,-1], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [-1,-1,2,-2,-1,1,-2,-2,-1,-2,-4,0,2,0,4,-3,-2,-1,-3,-2,-2,0], [0,0,-1,1,0,-1,2,1,-1,0,2,0,0,1,-1,1,0,1,2,1,1,-2], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [1,-1,0,-1,0,-1,2,-1,-2,1,2,-1,2,1,1,1,-2,-1,0,2,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [1,1,-2,2,1,-1,3,2,0,2,4,1,-1,0,-4,2,1,1,4,2,2,-1]] , [[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,-1,0,0,-1,-2,0,0,0,1,-1,0,0,-1,-1,-1,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,1,0,0,1,2,0,-1,1,1,-2,-1,-1,-2,-1,0,0,1,-1,-1,-1,2], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,-1,0,-1,-1,-1,0,0,0,0,1,1,2,-1,-1,-1,-1,0,0,0], [-1,-1,2,-2,-1,1,-2,-2,-1,-2,-4,0,2,0,4,-3,-2,-1,-3,-2,-2,0], [0,0,-1,1,0,-1,1,2,0,-1,1,0,0,1,-1,1,1,0,1,1,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [-2,-1,0,-1,-2,-2,-1,1,-1,-3,0,0,2,2,3,-1,-1,-2,-1,0,0,-2], [0,-1,-2,2,0,-3,2,3,-1,0,5,1,-1,3,-2,2,2,0,4,2,3,-4], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [-1,-1,1,-2,-1,0,-1,-1,-1,-2,-2,0,2,1,3,-2,-2,-1,-2,-1,-1,-1]]]; return result;