/* www-ATLAS of Group Representations. L2(19) represented as 17 x 17 matrices over GF(19). */ F:=GF(19); x:=CambridgeMatrix(3,F,17,\[ 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 15,16,3,1,14,1,1,13,4,4,6,10,16,0,1,5,9, 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, 5,5,8,8,11,11,10,15,10,15,5,1,4,1,0,4,18]); y:=CambridgeMatrix(3,F,17,\[ 1,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,18,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 3,11,11,16,4,9,3,1,5,14,3,17,3,4,14,2,6, 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 12,13,13,6,1,3,0,1,18,5,0,2,0,18,13,14,17, 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]); G:=MatrixGroup<17,F|x,y>; print "Group G is L2(19) < GL(17,GF(19))";