/* www-ATLAS of Group Representations. L2(17) represented as 18 x 18 matrices over GF(9). */ F:=GF(9); x:=CambridgeMatrix(1,F,18,[ "010000000000000000", "100000000000000000", "000010000000000000", "000001000000000000", "001000000000000000", "000100000000000000", "000000001000000000", "000000000100000000", "000000100000000000", "000000010000000000", "000000000000010000", "000000000000001000", "000000000000000010", "000000000010000000", "000000000001000000", "887676888866866280", "000000000000100000", "113030252532032002"]); y:=CambridgeMatrix(1,F,18,[ "001000000000000000", "000100000000000000", "011200000000000000", "211000000000000000", "000000100000000000", "000000010000000000", "011020200000000000", "000000000010000000", "000000000001000000", "000000000000100000", "000001000000000000", "000000000000000100", "000000000000000001", "004860645772082575", "573751233612751435", "000000001000000000", "135137025078323235", "000000000100000000"]); G:=MatrixGroup<18,F|x,y>; print "Group G is L2(17) < GL(18,GF(9))";