/* www-ATLAS of Group Representations. 2.L2(13) represented as 12 x 12 matrices over GF(27). */ F:=GF(27); x:=CambridgeMatrix(3,F,12,\[ 0,1,0,0,0,0,0,0,0,0,0,0, 2,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0, 0,0,2,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,2,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,2,0,0,0,0,0, 0,0,0,0,0,0,0,2,0,0,0,0, 2,20,10,13,12,22,26,23,24,19,2,19, 1,7,13,9,21,8,11,14,3,24,3,1]); y:=CambridgeMatrix(3,F,12,\[ 12,2,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0, 17,17,24,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0,0,0,0,1, 1,17,7,21,15,8,22,7,24,7,10,0, 0,0,0,0,0,1,0,0,0,0,0,0, 26,12,21,22,1,23,24,4,26,13,1,5]); G:=MatrixGroup<12,F|x,y>; print "Group G is 2.L2(13) < GL(12,GF(27))";