/* www-ATLAS of Group Representations. 2.L2(13) represented as 12 x 12 matrices over GF(27). */ F:=GF(27); x:=CambridgeMatrix(3,F,12,\[ 0,1,0,0,0,0,0,0,0,0,0,0, 2,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0, 0,0,2,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,2,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,2,0,0,0,0,0, 0,0,0,0,0,0,0,2,0,0,0,0, 2,25,14,16,15,20,23,18,21,24,2,24, 1,8,16,13,19,6,12,17,5,21,5,1]); y:=CambridgeMatrix(3,F,12,\[ 15,2,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0, 10,10,21,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0,0,0,0,1, 1,10,8,19,11,6,20,8,21,8,14,0, 0,0,0,0,0,1,0,0,0,0,0,0, 23,15,19,20,1,18,21,3,23,16,1,4]); G:=MatrixGroup<12,F|x,y>; print "Group G is 2.L2(13) < GL(12,GF(27))";