/* www-ATLAS of Group Representations. 2.L2(13) represented as 8 x 8 matrices over GF(13). */ F:=GF(13); x:=CambridgeMatrix(3,F,8,\[ 0,1,0,0,0,0,0,0, 12,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0, 0,0,12,0,0,0,0,0, 0,0,0,0,0,1,0,0, 0,0,0,0,12,0,0,0, 6,5,2,1,5,10,12,7, 9,11,6,11,4,10,9,1]); y:=CambridgeMatrix(3,F,8,\[ 0,12,0,0,0,0,0,0, 0,0,1,0,0,0,0,0, 12,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0, 0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,1, 0,0,0,1,0,0,0,0, 9,4,4,12,12,12,12,12]); G:=MatrixGroup<8,F|x,y>; print "Group G is 2.L2(13) < GL(8,GF(13))";