# Character: X2 # Comment: X3 *2 # Ind: 1 # Ring: C # Sparsity: 73% # Checker result: pass # Conjugacy class representative result: pass local a, A, b, B, c, C, w, W, i, result, delta, idmat; result := rec(); w := E(3); W := E(3)^2; a := E(5)+E(5)^4; A := -1-a; # b5, b5* b := E(7)+E(7)^2+E(7)^4; B := -1-b; # b7, b7** c := E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9; C := -1-c; # b11, b11** i := E(4); result.comment := "L213 as 7 x 7 matrices\n"; result.generators := [ [[0,1,0,0,0,0,0], [1,0,0,0,0,0,0], [0,0,0,1,0,0,0], [0,0,1,0,0,0,0], [0,0,0,0,0,1,0], [0,0,0,0,1,0,0], [-1,-1,-E(13)-E(13)^3-E(13)^4-E(13)^9-E(13)^10-E(13)^12,-E(13)-E(13)^3-E(13)^4-E(13)^9-E(13)^10-E(13)^12, -1,-1,-1]] , [[0,0,1,0,0,0,0], [1,0,0,0,0,0,0], [0,1,0,0,0,0,0], [0,0,0,0,1,0,0], [0,0,0,0,0,0,1], [1/3*E(13)^2+1/3*E(13)^5+1/3*E(13)^6+1/3*E(13)^7+1/3*E(13)^8+1/3*E(13)^11, -E(13)-2/3*E(13)^2-E(13)^3-E(13)^4-2/3*E(13)^5-2/3*E(13)^6-2/3*E(13)^7-2/3*E(13)^8-E(13)^9-E(13)^10-2/3*E(13)^11-E(13)^12, E(13)+1/3*E(13)^2+E(13)^3+E(13)^4+1/3*E(13)^5+1/3*E(13)^6+1/3*E(13)^7+1/3*E(13)^8+E(13)^9+E(13)^10+1/3*E(13)^11+E(13)^12, E(13)+2/3*E(13)^2+E(13)^3+E(13)^4+2/3*E(13)^5+2/3*E(13)^6+2/3*E(13)^7+2/3*E(13)^8+E(13)^9+E(13)^10+2/3*E(13)^11+E(13)^12, -E(13)-1/3*E(13)^2-E(13)^3-E(13)^4-1/3*E(13)^5-1/3*E(13)^6-1/3*E(13)^7-1/3*E(13)^8-E(13)^9-E(13)^10-1/3*E(13)^11-E(13)^12, 1,-1/3*E(13)^2-1/3*E(13)^5-1/3*E(13)^6-1/3*E(13)^7-1/3*E(13)^8-1/3*E(13)^11 ], [0,0,0,1,0,0,0]]]; return result;