/* www-ATLAS of Group Representations. L2(11) represented as 24 x 24 matrices over GF(3). */ F:=GF(3); x:=CambridgeMatrix(1,F,24,[ "010000000000000000000000", "100000000000000000000000", "000100000000000000000000", "001000000000000000000000", "000001000000000000000000", "000010000000000000000000", "000000001000000000000000", "000000000100000000000000", "000000100000000000000000", "000000010000000000000000", "000000000000010000000000", "000000000000001000000000", "000000000000000010000000", "000000000010000000000000", "000000000001000000000000", "000000000000000000001000", "000000000000100000000000", "000000000000000000000010", "000000000000000000000001", "220011010100000102021020", "000000000000000100000000", "111222122220210010021120", "000000000000000001000000", "000000000000000000100000"]); y:=CambridgeMatrix(1,F,24,[ "110000000000000000000000", "001000000000000000000000", "022000000000000000000000", "000010000000000000000000", "000000100000000000000000", "000000010000000000000000", "000100000000000000000000", "000000000010000000000000", "000000000001000000000000", "000000000000100000000000", "000001000000000000000000", "000000000000000100000000", "000000000000000001000000", "000000000000000000100000", "000000000000000000010000", "000000001000000000000000", "000000000000000000000100", "000000000100000000000000", "122021222112012122101101", "112100022222102220111111", "110220011202220112222221", "201220122002212102122021", "222122220011122112022222", "110001100101102100101120"]); G:=MatrixGroup<24,F|x,y>; print "Group G is L2(11) < GL(24,GF(3))";