/* www-ATLAS of Group Representations. L2(11) represented as 11 x 11 matrices over GF(11). */ F:=GF(11); x:=CambridgeMatrix(3,F,11,\[ 0,1,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,0,1,10,1,0,0, 1,1,0,0,0,0,0,10,1,10,0, 1,1,1,1,1,1,0,1,10,0,10]); y:=CambridgeMatrix(3,F,11,\[ 1,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0, 10,10,10,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0, 10,0,0,10,10,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,1,0,0,0]); G:=MatrixGroup<11,F|x,y>; print "Group G is L2(11) < GL(11,GF(11))";