/* www-ATLAS of Group Representations. 2.L2(11) represented as 8 x 8 matrices over GF(11). */ F:=GF(11); x:=CambridgeMatrix(3,F,8,\[ 0,1,0,0,0,0,0,0, 10,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0, 0,0,10,0,0,0,0,0, 0,0,0,0,0,1,0,0, 0,0,0,0,10,0,0,0, 4,1,5,8,5,7,10,9, 3,7,10,4,5,10,1,1]); y:=CambridgeMatrix(3,F,8,\[ 0,10,0,0,0,0,0,0, 0,0,1,0,0,0,0,0, 10,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0, 0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,1, 0,0,0,1,0,0,0,0, 6,5,5,9,9,10,9,10]); G:=MatrixGroup<8,F|x,y>; print "Group G is 2.L2(11) < GL(8,GF(11))";