/* Presentation for 2F4(2)' on its standard generators. Length 143, 6 relations. */ G:=Group; a:=x;b:=y; H:=sub; // Centralises x, has index 3510 [so not whole of invn centraliser]. K:=sub; // C13. T:=sub; // Trivial subgroup. // Maximal subgroups. // Ordering does NOT necessarily correspond to ordering of Max1-Max8 used // elsewhere in this ATLAS. M1:=sub; M2:=sub; M3:=sub; M4:=sub; M5:=sub; M6:=sub; M7:=sub; M8:=sub; // Some other subgroups. H1:=sub; H2:=sub; H3:=sub; H4:=sub; H5:=sub; H6:=sub; /* Coset enumerations to establish the order of G. Over K, T or H. [`Usual' checks must be carried out before one can state that enumeration over H is a valid method of determining the order of G.] K = C_{13}, T = 1, H centralises x and in the known image |G:H| = 3510 (so that H is only half the involution centraliser). The following should work. Index(G,H:Hard:=true,Print:=2,Grain:=10^4,CosetLimit:=10^4); 13*Index(G,K:Hard:=true,Print:=2,Grain:=5*10^5,CosetLimit:=2*10^6); Index(G,T:Hard:=true,Print:=2,Grain:=5*10^5,CosetLimit:=19*10^6); Index(G,M1:Hard:=true,Print:=2,Grain:=10^5,CosetLimit:=10^5); Index(G,M2:Hard:=true,Print:=2,Grain:=10^5,CosetLimit:=10^5); Index(G,M3:Hard:=true,Print:=2,Grain:=10^5,CosetLimit:=10^5); Index(G,M4:Hard:=true,Print:=2,Grain:=10^5,CosetLimit:=10^5); Index(G,M5:Hard:=true,Print:=2,Grain:=10^5,CosetLimit:=10^5); Index(G,M6:Hard:=true,Print:=2,Grain:=10^5,CosetLimit:=10^5); Index(G,M7:Hard:=true,Print:=2,Grain:=10^5,CosetLimit:=10^5); Index(G,M8:Hard:=true,Print:=2,Grain:=10^5,CosetLimit:=10^5); */