/* www-ATLAS of Group Representations. 3.TE6(2):2 represented as 54 x 54 matrices over GF(2). */ F:=GF(2); x:=CambridgeMatrix(1,F,54,[ "100100010101101100110011101000011010100010100000000000", "101000000100111011101101101011101111110110001010000111", "100101011101001011110110010110110101100000001010011000", "111001100100100000100110000110001100101110100100001001", "100000100011111001100101100001010111110110010010100011", "000000101010010010000011101111101011100011100011000010", "100001011010100011011011000001110001110110010101001011", "101010010110101001010101001111110101110001111010010000", "010101011111010001001011011100100111001010000000010001", "010000100011011110101010100000111010100000000101010011", "001110011001010011010110110111001111100101110110111111", "001010101101101000100000111110010110111001100111001000", "100000001000011110101011100111011011001001100000101000", "000101001010000011101110101001110001111010000001000001", "111010101110011000110011001110010111001100101101100011", "100100000110000110011000011111110011111101101011101101", "011100110010101011101110000001001111111100010111010100", "010010001111111100110010110100101101111101000111110011", "101111100011101010011110000101110100101100111011010011", "110000010000001011000101111001010001001111110100000101", "110011011011000100100111110100011100001111111001000100", "111001111001011001100000101000110101011101100011100110", "101011110011100110111011001001010010110000100011010110", "000100111100010100010110000000000001101010110011100000", "010000111011010110101101000110101001001010111110111101", "010010000110100100000000110101010111100011101110111100", "011010110101101111101110000101011101110010010101010110", "011111001000001111101000000111011101000101001010011010", "100001110001101100001110100011100100010000111011100001", "010011100111010010110000111001011110111111001101100100", "111000101101011111101001101101010110001000111010110001", "100000111100001011101100010001010010001001010111000111", "001101001011001101001011101010001100010010001110000010", "000000001110100011110110010010011011101111010110001011", "010011101011011100101010100101101111000110110000111011", "110011100000101010110100101100000101011011111111010011", "111111000101000011110111000111010101011111000001100101", "001110111000111111111001111110110111010110010101001001", "001110000001101000101001010111101010111000010100000011", "001110000011000011011111111001101111111000111011111010", "010010111001011101100110101111010011110010101110110101", "110000110011110101011111001000001001110001111100001100", "011010011011111101100011001001000101101101001000000001", "011001111010011000011101001110011101100000111111011100", "011000101100101001101000010111110100101010111111101001", "101000101110100001000011000111001000011000011101100101", "100110110000001011101111000100001010001011111000011010", "101111110000010111010110011001100000000000110111111101", "101110111110110001101011010011111010101110101100110011", "110000001100001011000111110100010001111001101010010101", "111111100011110001111011011001111010001010111010011001", "101100001111111000001000110001010110001100000100100010", "110001000010011101010110101111110111101010011101010011", "010010101010101101010011010101110010110011001110101000"]); y:=CambridgeMatrix(1,F,54,[ "110100111001101010001111110001100001011110111111110010", "011000101000110110111110110000101000101100000110100110", "111000010011101000110001010101000000000000000011001100", "110101010110110100110000110111101101011000101101100110", "111001101000111110000101100001010101100101111111100001", "101110100101000110000011001001000011011000111011111000", "110011100001001110100110010111001111111010110010110011", "001001010010010110010100100001000111001100000101001011", "011010100001101001111111111000100111100111100010001111", "100100010111101110100111001111100000101101011111000001", "010110100100001110100000011010100110011010011010000111", "110010010110000111001001001001001011101010001110001001", "111110111110110100111010111111001111101001011001110000", "001011000101100100011110100010100010001110000100100011", "110110001011111101010001010101000010010011011000001100", "100111011000110000011101101110110011100011011010101010", "001010101100110011010010011010011001100110101000001100", "110111001011100011101110101101001111011110011110110010", "010000110101101010000100100110101011000111000000001110", "000111000000001001111010011100010110010110111000100011", "011110000001011110010111000000110110111101100011110010", "110110010011011111111001101100011010001110011111011010", "111000100000100111001101000010011000111010100100100000", "000010111010100010110101001111001110011000000100110111", "110100001111100111111110100110111001111000100110001100", "101111101111110111111101010011100001101011111001010101", "010101001111111011010110111111100100111011001001111000", "101010101001110110001100101011000010001011100101110000", "011101001100110010110010011111011111010110110011111000", "101101000111010100001000001111011110100011110001110001", "001110001000001011010100111111111110111000001000011110", "101110011101111110010001001101100000100011011001011001", "110110111001110101010100110101100010110010111101000110", "001010000110100010000111000100100001111011101110010011", "101000001101111111100111111100110011101011001110000100", "111001011101001000000010000110100010000010010001101101", "111100100111100100000100100111111110000011101100011100", "011010000000101101000010101000001111010010110010000110", "011101010010000110000110011000000110001000010111111111", "010011010000000010111011001010100100011001001110101101", "111111101010001000110101110100000100110010011010011100", "010110100000101001101001001011101001101000010010011001", "110001111000010111001000010011110101101110010001011111", "011111111111001000001100110101000000101001101011001001", "101111100001101101100111000101010110011010111111001101", "010000010011111011100110001001010011011111111100010000", "000110000011110001101010100110110010111110111000110101", "110100000000111011011111011111101101101000000100001110", "100010100101000011101001011011110010100111010011110010", "001111001110100111011001110110011000111101000000111001", "001111110010001101101100000111111100111100101110010100", "110110000101001010111110110011100100110000001011111010", "000110010111010111100000101101100100101100101010000001", "101001110011010111001110110110011011010011111011111101"]); G:=MatrixGroup<54,F|x,y>; print "Group G is 3.TE6(2):2 < GL(54,GF(2))";