/* www-ATLAS of Group Representations. TD4(2).3 represented as 52 x 52 matrices over GF(3). */ F:=GF(3); x:=CambridgeMatrix(1,F,52,[ "0100000000000000000000000000000000000000000000000000", "1000000000000000000000000000000000000000000000000000", "0001000000000000000000000000000000000000000000000000", "0010000000000000000000000000000000000000000000000000", "0000010000000000000000000000000000000000000000000000", "0000100000000000000000000000000000000000000000000000", "0000000010000000000000000000000000000000000000000000", "0000000001000000000000000000000000000000000000000000", "0000001000000000000000000000000000000000000000000000", "0000000100000000000000000000000000000000000000000000", "0000000000000100000000000000000000000000000000000000", "0000000000000010000000000000000000000000000000000000", "0000000000000000100000000000000000000000000000000000", "0000000000100000000000000000000000000000000000000000", "0000000000010000000000000000000000000000000000000000", "0000000000000000000010000000000000000000000000000000", "0000000000001000000000000000000000000000000000000000", "0000000000000000000000100000000000000000000000000000", "0000000000000000000000010000000000000000000000000000", "0000000000000000000000000100000000000000000000000000", "0000000000000001000000000000000000000000000000000000", "0000000000000000000000000000100000000000000000000000", "0000000000000000010000000000000000000000000000000000", "0000000000000000001000000000000000000000000000000000", "0000000000000000000000000000000010000000000000000000", "0000000000000000000100000000000000000000000000000000", "0000000000000000000000000000000000100000000000000000", "0000000000000000000000000000000000010000000000000000", "0000000000000000000001000000000000000000000000000000", "0000000000000000000000000000000000000010000000000000", "0000000000000000000000000000000000000001000000000000", "0000000000000000000000000000000000000000010000000000", "0000000000000000000000001000000000000000000000000000", "0000000000000000000000000000000000000000000010000000", "0000000000000000000000000010000000000000000000000000", "0000000000000000000000000001000000000000000000000000", "0000000000000000000000000000000000000000000000001000", "0000000000000000000000000000000000000000000000000100", "0000000000000000000000000000010000000000000000000000", "0000000000000000000000000000001000000000000000000000", "2010020012101221221101000000012000021010102100121010", "0000000000000000000000000000000100000000000000000000", "2112120021101012020102111210012212111211120220211220", "1012200220110021210120011211112212122111121120212120", "0000000000000000000000000000000001000000000000000000", "2222222121000000002002020001210002010210000022000200", "2010102100201021221002000211110200102211222100022210", "0022220101101102122120220112002000121202000000021200", "0000000000000000000000000000000000001000000000000000", "0000000000000000000000000000000000000100000000000000", "0201120220201111020022110101000100022102111200212110", "0102210022102001221100012000112212100110220010201011"]); y:=CambridgeMatrix(1,F,52,[ "0122020101111001000020021112002112120112110120221000", "2221000121010201020010001122210212210220202020122210", "2001002001221100002210100202222000012021022200112100", "1122122221212201220201010111122200020000121200120110", "2222110000102200210200002002021221220012100010100020", "1121001120210021000221000221111000121011020201121112", "2221000100112200222111010220102212112120121100120112", "2000212200222210021010010022012001000120102011201210", "0111200022012211020021220101222200012010120100120200", "2011002022202001012211201011011121022002120212120000", "2200212002221202001121011022111002012212120020000020", "2012010021220112010100220110021010000121212120001220", "1101220202111210121122112022020120222120201002200210", "0022110100000100210201002012021221020012100010100020", "0221122020212000221221022100210120201001011110022102", "0021210221110220110100200022011102101022002200010212", "0100021200012122022121112112121221111210121210211120", "2022220021020210202212122012100022210101201010201021", "0112011002201121220000212022120120102001201010022202", "0021211002220101202120220002110121122010200011101110", "0112010222112220020101021211222122121110221210101220", "2111221120210211001000121200211212022222020220220000", "0110210111000222221001212211112111222020222220121102", "1012220000211222220102021102012110121222212021011200", "1202200012021221102121011110121022100000211120022220", "1110221221011001202122112201002210222211022100211120", "1002210111101200212002200121101100201201111220011020", "0021122102021211201002110221101120022100220002212210", "2011202120010012210120122020122211110022212021120022", "0201221221000010211000121211200210202212022201210200", "0122002201120100120220000210121221222212021210121011", "0200000121200002122102202200102221020200221212212000", "2211101020021210120201022110221121212010010120121000", "1212002101221002212210210102220111002111022120101212", "0220022010102201220111100221121112121100020022222000", "2002200022200010201101111201212012212100000020210220", "2202002012112000002211220210012121022121200210010010", "1001011201202202011222220001011201222101200211002220", "1111120000220012012112020020022211022110100001102111", "0112112211112110020002112021212012002202202020221121", "1200010200200022120111220220100220110121211200212000", "2212102000020211112022110020000221222211100010220100", "0220122212112100202120001220102012110110121200120020", "1010202111011222121010010002022210212002201020221020", "1210002020211020122021201222202011122222020210010022", "2120202120100202010121011201020222122211200220012020", "0100110122211100112020210120202100220220110100010020", "0220201012010120201010122011021000211100022000020221", "2221202022221100102222022101012101021222112111222000", "0000211220012002121211110110201201122220002000122121", "1020222101002021211222010100102011122111211120120202", "0222112122010012120122012011222012000021122020022220"]); G:=MatrixGroup<52,F|x,y>; print "Group G is TD4(2).3 < GL(52,GF(3))";