/* www-ATLAS of Group Representations. TD4(2).3 represented as 24 x 24 matrices over GF(2). */ F:=GF(2); x:=CambridgeMatrix(1,F,24,[ "010000000000000000000000", "100000000000000000000000", "000100000000000000000000", "001000000000000000000000", "000001000000000000000000", "000010000000000000000000", "000000001000000000000000", "000000000100000000000000", "000000100000000000000000", "000000010000000000000000", "000000000000010000000000", "000000101011010000000000", "000000000000000100000000", "000000000010000000000000", "000000000000000000100000", "000000000000100000000000", "000000000000000000001000", "000000000000000000000100", "000000000000001000000000", "001111110101010010011000", "000000000000000010000000", "000000000000000001000000", "110000101111000111100111", "000000111100101110101001"]); y:=CambridgeMatrix(1,F,24,[ "000110011100111101111010", "110101110011110000010110", "110001101111010000011110", "010110010000111011000111", "000110000001000100010001", "111101000001001010010101", "011110001000101010101011", "010000001100110001110000", "100001100010101000000110", "110001000010011110100010", "001110101001110001000111", "110101001111111110111111", "001010111100000111001000", "001110011110101111001111", "001100110100001001110000", "110110010010001101001000", "001101000010101011111010", "110101110000000010100101", "010100111100110111010100", "001010000110100001010010", "011111000111010101111011", "100000010010100010011011", "001100111110100001101110", "001011100000000111011011"]); G:=MatrixGroup<24,F|x,y>; print "Group G is TD4(2).3 < GL(24,GF(2))";