/* www-ATLAS of Group Representations. TD4(2).3 represented as 26 x 26 matrices over GF(13). */ F:=GF(13); x:=CambridgeMatrix(3,F,26,\[ 7,7,4,11,3,0,7,4,12,5,10,7,10,2,7,7,12,3,5,1,11,12,5,4,2,11, 7,12,6,3,3,8,12,0,1,9,12,3,5,7,5,8,7,9,0,9,12,11,7,3,7,9, 5,3,8,6,7,10,3,4,12,9,5,8,8,4,2,10,4,6,11,8,6,10,10,3,10,4, 5,1,6,7,1,1,9,10,7,5,6,8,3,4,4,10,0,2,9,4,4,1,9,1,12,4, 4,10,5,8,0,11,4,12,0,11,9,9,8,12,6,4,0,5,2,1,5,10,5,8,2,7, 3,11,7,7,5,1,0,11,6,12,9,4,5,6,7,5,1,6,2,0,10,6,12,5,0,11, 12,0,6,11,2,11,10,2,9,12,9,4,5,2,5,12,7,0,4,1,1,0,2,4,5,2, 10,0,0,6,2,11,2,1,12,1,10,7,6,6,9,3,1,0,6,11,0,3,11,7,3,1, 3,2,7,5,0,7,10,4,5,4,0,3,6,7,10,8,0,5,7,2,8,11,0,0,9,4, 6,5,6,12,10,1,1,6,11,3,8,5,1,6,9,9,6,10,5,3,2,2,9,12,4,12, 11,8,0,8,7,4,8,5,12,11,5,8,7,11,7,1,11,9,2,11,1,2,4,0,8,2, 6,6,6,3,9,3,9,10,12,3,12,12,6,9,7,2,9,6,0,10,8,6,1,10,7,11, 3,10,9,9,5,8,1,7,0,5,10,8,1,0,7,4,7,2,7,8,4,6,7,4,9,8, 12,12,3,9,6,8,5,12,1,6,12,3,9,12,3,7,6,1,11,0,11,4,3,0,12,2, 11,12,7,1,4,8,1,3,12,5,4,7,8,6,9,10,0,11,7,2,6,6,0,10,6,7, 8,3,5,12,4,8,9,4,3,7,4,3,9,2,10,7,10,7,6,9,0,6,5,6,7,6, 4,11,2,1,5,11,9,10,1,8,2,3,10,12,3,7,8,11,11,8,5,8,4,6,6,11, 8,11,5,11,10,2,8,0,1,8,1,10,5,4,5,11,12,8,11,7,1,3,1,9,9,11, 7,4,3,0,10,0,7,5,2,4,6,5,4,11,9,6,8,2,9,12,6,8,7,6,12,8, 10,5,12,10,3,11,3,11,1,6,11,10,9,9,4,0,9,2,1,11,2,7,10,5,1,8, 8,6,2,7,11,3,2,0,4,10,6,12,12,4,12,5,9,8,3,3,2,7,2,5,9,3, 11,11,3,10,6,3,11,2,9,1,3,2,5,11,8,1,6,2,8,11,9,3,0,4,0,2, 9,2,2,2,1,2,8,2,9,8,1,5,4,10,7,6,4,9,5,2,0,3,9,9,3,5, 5,2,8,2,4,6,10,12,1,7,7,0,9,2,1,12,12,6,6,10,7,3,3,12,6,5, 0,7,0,1,10,12,0,3,9,12,3,3,7,12,3,9,8,0,1,3,3,8,12,5,12,11, 5,9,6,1,7,12,2,0,5,11,5,3,7,1,6,5,9,0,8,5,3,4,11,10,3,10]); y:=CambridgeMatrix(3,F,26,\[ 11,8,5,0,1,4,12,6,9,4,3,0,11,9,7,5,2,6,1,1,9,3,1,8,12,5, 12,9,0,12,12,7,6,1,7,3,10,12,4,12,5,5,12,1,0,12,3,7,9,5,5,4, 11,1,3,1,9,6,10,12,1,5,11,12,6,11,2,10,9,12,6,6,11,2,8,6,9,0, 8,8,1,3,2,10,12,5,12,8,2,11,1,0,9,8,2,5,1,1,3,3,12,10,1,3, 7,5,1,12,3,3,5,1,12,1,8,5,7,10,10,6,9,0,4,12,10,7,7,9,5,7, 12,2,2,9,9,8,4,6,2,2,10,9,4,3,12,8,1,6,4,12,8,6,6,1,8,1, 4,9,11,8,4,1,12,2,8,11,5,7,10,2,6,0,5,6,3,3,2,7,1,2,6,3, 2,12,7,2,10,1,3,11,6,4,10,2,12,1,5,11,12,7,7,10,1,9,3,7,10,8, 11,7,8,1,11,6,5,11,2,0,4,4,1,11,9,12,12,0,0,8,5,5,3,7,5,3, 1,3,10,6,10,7,6,0,1,5,5,9,1,0,12,1,6,0,2,0,9,11,6,7,5,11, 1,0,4,7,0,1,5,10,8,9,9,11,11,9,7,11,10,5,0,10,10,10,11,10,5,6, 12,12,6,0,9,1,11,1,4,0,11,4,4,1,8,12,9,11,1,1,1,4,7,2,8,5, 0,0,8,11,8,0,8,4,8,2,3,8,0,12,0,3,9,5,1,6,1,9,3,8,5,5, 2,2,6,7,5,5,11,12,5,6,6,12,12,7,3,10,6,3,4,12,6,1,11,0,12,9, 9,10,7,1,11,4,1,1,10,4,12,2,5,9,2,2,9,4,4,6,5,7,7,1,3,8, 6,6,0,1,12,4,0,4,9,3,6,6,7,12,7,11,9,12,5,4,0,4,0,2,7,7, 7,1,2,9,7,12,10,8,12,6,4,2,8,5,6,7,8,6,11,12,8,2,1,3,5,3, 10,0,12,4,6,12,0,10,1,2,2,7,4,9,12,7,10,10,1,8,12,10,6,4,6,9, 9,10,4,6,8,4,10,4,9,5,5,2,11,4,11,0,11,11,5,5,5,12,7,11,6,2, 1,1,1,10,3,8,3,10,12,0,9,4,10,12,7,6,3,2,10,8,5,8,9,4,4,1, 0,8,10,8,12,11,11,11,2,2,2,7,6,6,5,12,3,8,4,2,9,9,5,7,9,8, 5,0,6,6,8,4,2,10,2,0,9,5,11,0,6,8,1,1,12,2,4,3,5,9,12,7, 1,6,4,4,6,4,3,12,3,5,9,4,7,4,2,5,9,6,12,7,0,0,1,6,1,8, 4,1,4,4,6,3,8,4,4,9,5,9,12,5,3,9,1,6,7,1,5,10,12,8,11,1, 4,7,10,9,0,9,3,7,6,7,0,4,5,10,2,8,0,6,7,8,5,8,10,0,10,12, 1,0,4,10,12,7,0,8,7,12,3,2,11,8,5,4,0,6,1,6,6,8,4,11,11,6]); G:=MatrixGroup<26,F|x,y>; print "Group G is TD4(2).3 < GL(26,GF(13))";