/* www-ATLAS of Group Representations. TD4(2) represented as 52 x 52 matrices over GF(3). */ F:=GF(3); x:=CambridgeMatrix(1,F,52,[ "1210200122201111202200001120210001022002200010002211", "0011022120201221001200121022121002010202201201221011", "1122201101100200012201220200122022001200102122010022", "0101222002121122001000100111020001000202100020100110", "0011121201201102120211001121002020000101210011112021", "2200020110221010102221002011012011002101221012120021", "2121201110020201201120211021020002120020210020121202", "2100000002012021221002122121200000020200221020101100", "1111121010220101211110001000012002012102222101022212", "2020011120020112111011120201211012021010102201101101", "0201220122001220002220201122020001212012102122200202", "0100010011222122111101211010210002220111100110002202", "2102012110111020120102212000012002200212100011012110", "2211201102211220120122222110120012112112012110001101", "2101200202122202110111101012102002210001022211222121", "1020110012121022111120220210122020101011122222012212", "1211202010010110021121220101110000110110220000122111", "2000122120000211000000211222110010020012102220222202", "0202212101002101011012200112110000220112010201221120", "0210002111202011101211002010101001202000212021012002", "0200012112110101212120020020221000002212111021000021", "0202101022002010011220110202121012100022101202200002", "0202122202102210202020211112121001220211102022200020", "2201200020001211101020111201210010010021112000111220", "2210001112100001011020120121122022222201101121112221", "1120122000111011220101110101000002000122121001110012", "0022222120222111100002110112012010021111020220221121", "0202021210001020012020020120001000000012010100200020", "0200011022000210111210201022221020020011100112202111", "1112212201201011222100100011102001120102010222102221", "0200012112110101212110020020222000002212111021000021", "1110022202100220120102000200000102000220200020021000", "0102102211011201122021211212211001201011101002201210", "0112002211202111100221110221101001000200102221112212", "1121212211202012010020220212010000000112022101201020", "1011011010010122000112122012212021121200010020201221", "0201021211212120012120201121010001221121212010112122", "1121200101001020000021220101110022120112201110101112", "0211120112102111101112221000112012020200022110010212", "0212002022101102011020021110111010210121020102011222", "0111012112211200000202100022111001101201011200222121", "2221111202010011102211010210112021221211121220000011", "0100212212221111000201101010120000002010002211000100", "0202220221200100122020202102211002110110221011200020", "0102220210220222212011121221200000012200012202101101", "0220020120100211000212001010011002012110221000020002", "0102001222112011121020102021221001110211121221200210", "0110011120120010000102020110120000001002202022011021", "0101011200001210120220210202000001212100020100201110", "1222120002120212000220221021221011010202120011110111", "2112201000001020001221221221101000220010101122102112", "2120110022021220200010202200011001100110212101002100"]); y:=CambridgeMatrix(1,F,52,[ "0100121110220011001020122021110010110221112101111201", "1222212201022122012102000012010010220211222102222021", "0221002020121100120110210022212221101000021212120000", "2101010012201222221020200000201120111222021220120001", "2012202102201201222020010220211121122211101201201210", "1222121122222211201112012012212021220111000102120001", "0021111211000111202010011101222222122011222211101210", "2112010120200202112110201020121112221221110121110012", "1000212011220120200012221120220121021210102122212101", "2112010022102002022221220200222122012020021002210122", "0120202220110222211110012122021002111110000000102012", "0212021110211101001220001221120010101110012122221021", "2111100200110102221112001011211000011000221120011012", "2110001111021221000011202110222222222210010102122111", "1220022120112210202201202102010122201101111120200120", "2202222120010121220020120100020010101022111220002022", "2122201220121012101102200120121121022100202000010220", "2022000201200200220101112220121202121220002002100001", "2002110120221021000110212102010200110021212211200211", "0001201110022122021001001121220111112022022001012001", "0222021222101000220010210121111022212001212101011201", "2121011120200221211200002202210121020220102100112220", "0122021110002212021200111010222010101122001102020121", "1201100120000211100021101002011000002111010110101210", "2212121022000000200210011001001200012111221100022222", "0210210200212202211200211000211221210220210001111222", "0110010012011021111201002100211002202220001201021201", "1222020210201022212210211111221210122111100200000021", "0211010000110201102101021112100021110020212122210002", "0222002211101011012210011201100012102122022102110012", "1112002210222111011010202121121221010100100101021112", "2202200210011221211202221201021121202221001111211000", "2221010000220221110210201110211002011011120012112101", "2100202100111021111221212110210201010201221121011200", "2100221210120202022021000002102222110020200000221221", "1200221010201202020222221220012021122222011220001010", "2102221011201001200221111011210111210021112100022211", "0200211221002101000120011212102112102011112122100012", "2112001211112010000121100100221210122202122220002200", "1200111012100112011022221020100221121120011202110222", "0120222212222200112022201022122220111121002012000001", "0212220001112201222122120120102021112001112222002121", "2122022200220020011120212100221100002022101100111002", "0222002222110021201120012222110010112211122021020022", "1000222110102001211020022021122201122110220110122011", "2220121210202122221021112210020200100010102211201012", "1121022020120110110000102202212021212000221101222221", "1211011020020022112212120021220220210120211100101201", "0010021001012100202111202000220112021121121101210012", "2111022011122120212021100110211212122001222212101010", "1101220022120122120012020202111220022110012202100000", "1001210220110010212110021120010200021010022102000100"]); G:=MatrixGroup<52,F|x,y>; print "Group G is TD4(2) < GL(52,GF(3))";