/* www-ATLAS of Group Representations. TD4(2) represented as 26 x 26 matrices over GF(13). */ F:=GF(13); x:=CambridgeMatrix(3,F,26,\[ 2,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 11,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 8,6,8,8,4,8,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 11,5,12,11,12,11,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 3,12,12,11,12,0,12,3,8,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 10,9,0,12,12,11,10,1,7,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 5,5,0,8,8,10,3,10,10,3,0,4,7,0,0,0,0,0,0,0,0,0,0,0,0,0, 9,0,12,0,8,1,12,7,10,7,9,5,9,5,7,0,0,0,0,0,0,0,0,0,0,0, 2,5,1,9,1,4,11,11,4,9,11,0,5,9,10,0,0,0,0,0,0,0,0,0,0,0, 4,10,3,5,7,11,8,3,0,7,3,12,5,8,6,7,11,7,0,0,0,0,0,0,0,0, 8,7,6,12,4,6,9,9,2,2,2,12,7,11,11,3,4,12,7,10,0,0,0,0,0,0, 0,12,4,4,10,1,5,4,8,4,11,10,10,5,11,2,7,8,9,11,0,0,0,0,0,0, 11,12,4,8,7,6,1,4,2,11,9,5,0,9,5,8,7,3,3,5,3,10,6,0,0,0, 3,6,6,0,5,9,1,8,5,5,6,6,1,3,8,1,8,9,11,3,9,4,5,0,0,0, 1,12,1,1,0,4,11,0,10,8,12,10,7,9,4,11,11,6,9,1,2,12,4,4,12,10, 11,11,11,2,12,9,5,2,7,3,2,5,9,6,6,2,7,2,8,3,10,10,7,2,6,5, 5,6,11,10,11,5,7,6,5,5,11,11,10,10,9,9,6,8,1,0,12,2,11,4,12,10, 1,2,6,9,12,4,6,3,11,5,2,2,3,12,5,6,12,1,3,4,9,1,5,1,3,9, 0,6,1,6,1,0,2,7,3,5,7,5,3,0,6,1,11,11,1,1,7,9,1,12,10,4, 0,11,4,11,10,12,2,6,12,1,10,6,3,6,0,0,11,6,12,11,9,6,7,12,10,4, 0,4,2,11,5,4,3,3,11,8,8,8,10,4,1,3,9,4,0,10,5,10,10,12,10,4, 0,3,10,0,5,2,11,9,8,12,5,0,0,7,12,11,12,1,11,6,3,12,5,8,11,7, 0,8,12,4,6,1,2,8,8,3,4,2,2,4,6,4,10,10,0,0,8,4,3,8,1,3, 0,6,0,4,7,1,9,8,12,2,6,7,4,4,8,4,6,5,0,8,6,2,12,6,4,2, 0,1,0,7,4,8,12,6,8,4,9,12,5,6,12,9,12,2,4,6,1,0,2,4,12,9]); y:=CambridgeMatrix(3,F,26,\[ 2,8,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 11,4,5,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 12,12,0,8,4,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 8,10,7,7,7,1,8,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 12,4,10,4,8,1,1,7,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 6,5,10,7,4,11,1,5,3,6,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 4,6,6,9,3,10,0,0,12,2,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 9,8,7,11,0,0,0,9,1,10,8,1,6,2,0,0,0,0,0,0,0,0,0,0,0,0, 10,7,1,9,0,3,4,7,6,3,4,2,6,4,12,3,0,0,0,0,0,0,0,0,0,0, 10,0,9,2,7,7,1,4,7,3,0,5,2,4,3,7,4,0,0,0,0,0,0,0,0,0, 6,9,0,10,8,2,7,6,3,12,7,1,10,8,0,2,1,9,7,0,0,0,0,0,0,0, 2,6,9,3,12,3,1,12,6,12,3,4,7,3,5,8,1,2,2,4,5,0,0,0,0,0, 7,5,12,8,12,7,1,10,10,5,1,1,1,10,12,10,2,1,1,6,7,4,0,0,0,0, 7,12,1,7,4,7,10,3,3,9,10,3,0,5,10,9,8,7,12,8,4,5,7,3,0,0, 4,11,10,3,10,2,6,3,2,4,8,9,12,6,4,6,1,8,2,10,3,6,6,9,1,0, 0,7,10,3,1,0,2,5,0,1,6,11,1,2,12,7,6,8,7,11,7,8,7,1,3,10, 9,1,11,4,3,8,11,5,9,3,12,4,11,9,3,0,0,11,6,11,3,2,7,0,7,6, 4,6,9,7,1,9,9,5,1,5,6,3,10,0,6,2,10,4,2,0,0,3,2,12,12,6, 9,8,9,8,10,11,6,5,2,10,6,12,9,4,12,9,0,7,4,9,6,10,1,4,11,7, 10,2,6,3,10,1,0,0,8,11,5,0,4,4,12,1,10,9,5,0,10,9,4,6,9,2, 11,10,3,9,12,5,9,9,0,11,10,9,6,8,3,4,2,1,0,0,10,2,5,11,3,11, 7,0,11,3,2,11,6,10,7,10,8,5,12,0,2,5,12,4,11,0,4,11,1,6,7,4, 4,6,2,5,6,9,11,0,2,6,1,8,9,12,8,10,2,4,0,5,5,4,6,3,7,6, 12,12,8,7,3,0,4,11,0,10,11,9,11,3,8,10,9,0,2,4,10,4,8,7,8,3, 1,0,6,12,4,1,5,0,7,1,1,6,1,11,10,7,11,8,12,11,8,9,3,6,3,9, 2,11,12,1,8,2,12,2,7,6,4,12,11,11,4,1,3,9,10,1,5,4,10,7,8,9]); G:=MatrixGroup<26,F|x,y>; print "Group G is TD4(2) < GL(26,GF(13))";