/* Sz(8) presented on its standard generators. */ G:=Group; // Maximal subgroups. M1:=sub; M2:=sub; M3:=sub; M4:=sub; // Some other subgroups. H1:=sub; // 2^3:7. H2:=sub; // D26. H3:=sub; // D10. /* Groups presented by x^2=y^4=(xy)^5=(xyy)^7=1 + subsets of {R1,R2,R3,R4}. R1 R2 R3 R4 Group presented. n n n n Infinite - Known image (2^2"Sz(8))^2 x 41^7:L2(41). n n n Y 2"Sz(8) (not on standard generators). - Type P. n n Y n 2"Sz(8) (not on standard generators). - Type Q. n n Y Y Sz(8). n Y n n ??? Known image 2.(2"Sz(8) x 2"Sz(8)). n Y n Y Sz(8). n Y Y n 2"Sz(8) (not on standard generators). - Type Q. n Y Y Y Sz(8). Y n n n 2"Sz(8) (on standard generators). Y n n Y Sz(8). - Best for coset enumeration. Y n Y n Sz(8). Y n Y Y Sz(8). Y Y n n Sz(8). Y Y n Y Sz(8). Y Y Y n Sz(8). Y Y Y Y Sz(8). Proofs: If R1 or R4 is present. Coset enumeration over trivial subgroup or = D14. (Seems easy.) Rels R3 (alone) or R2+R3 (but not R1 or R4). Coset enumeration over = D14. Use H:=sub; 14*Index(G,H:Hard:=true,CosetLimit:=10^6,Grain:=100000); None of rels R1,R2,R3,R4. Holt & Plesken (J.LMS(2) (1992) 469-480) show that Z^28.Sz(8) is an image, so this group is infinite. Rel R2 (alone). We don't know. */