/* www-ATLAS of Group Representations. R(27):3 represented as 21 x 21 matrices over GF(3). */ F:=GF(3); x:=CambridgeMatrix(1,F,21,[ "202210200201000002000", "212110110110101002021", "220010022212221011221", "112111200121210010212", "102022201000100012210", "200100101202112012210", "011222021121011120222", "210210010120102100011", "120220022110200002011", "120122210020011212111", "222222201200220101212", "120102021100011021222", "101212111022001000111", "100011210122100121021", "112000112011110112022", "100120201201000110120", "221002001002101202212", "120112202121021011002", "210221121121011002000", "222020001112111202201", "211120212011120220021"]); y:=CambridgeMatrix(1,F,21,[ "221010212200120122000", "200010021011020012011", "102010001022120122002", "111212100021120111020", "020001010021222011200", "102012002120011010201", "122010222202001122211", "102002110021110221020", "200120022012111202202", "102020021000221012101", "122200111000011122022", "122200102120120012211", "212102201012101000112", "202000002100122201010", "110110010100222220110", "010220220111212000200", "010122002011101122210", "002002110102022220210", "220011110010022012221", "012100010111222012111", "111021002222011111101"]); G:=MatrixGroup<21,F|x,y>; print "Group G is R(27):3 < GL(21,GF(3))";