/* www-ATLAS of Group Representations. G2(4).2 represented as 64 x 64 matrices over GF(3). */ F:=GF(3); x:=CambridgeMatrix(1,F,64,[ "0110100201112220222210011012202211010012200011000110210200020110", "1002102120201210021011222121020202110200102100221120221012021122", "2010122102211001021112122022002122011220121121121100121221012221", "0110012020201211000022012011010022011202102002001002010121002022", "0012221220011111220000200111221020221200121112202222021121202111", "1102000020011112112011201212022121000120211022101000222020212021", "2112200212211102110020212211112012002111110102212011011202011200", "2000000110210001000122211022022002100100100102111101221102102210", "2021222121111122222201001221220201110110211112200221000102102221", "0022111000121221022011010010211012120201012001010100102020020102", "2202121221121211222221002012001100100002222011111000011200002022", "2202011020100121201011202200120010001121111100222111122020002021", "0202101201202212100120201011020200210111000012202222021020222120", "1101112201222020222010011020222220221020210112202112021022112100", "2011211220202021210010221001200201201201011001202000220202020111", "1221111211101000211112210222220000102200101221022221122122201011", "2010010112020220011212120022110112010220111110202101221022001111", "1101011221111122201101012000212020012102110020200001121121222010", "1201100020201010210121212121221122022212000120110102122120112220", "2121001221212200211211101022211122021120120022220011000101201220", "0210202210021112210221021210202222112200022122012211221122211222", "2021012011101012021021022021010011010201201121121021200021211101", "1100021100201010021110002122010022100000122000022022211101200202", "2121122212002011012212102220022100012201222012012012011022212002", "2122211102211210000020002002102110202122022112022111021212001012", "0220022101102000021000011011000200001201200200210021021202122010", "1011110202222000012120202120122001111101222100122121202222111012", "0120020112000022210100221211111021022100211001121101102120121221", "1120011010111011210201212112012211211122101212021020221101022111", "1110200110010220000011211101010122202222011022000102122022120111", "1022201112111210120001021221011021021222221110122112010212012111", "2020222101101002012210122111200020011220211012211120221020010121", "1100000011221111020120011020010211211102111120122002202021202021", "0121022100002022110210212220202002222111000200112121120200120110", "1002210211200020210002012010202211101101110022021110221001212010", "1111100221111110220221111101220101100012100102111020110002011100", "2222000011021120110102202022020122202121121220112101211110011021", "2122100002212012212001022201111112221112111021000202010102202121", "0212201212200021111222001101102101210001202112120101211110212002", "2122100201000101012121120201011122110011201221221010211210111101", "1020212002102020101220220200200111102100222001012022210021021102", "2220212110222100022000102121211020022101210100222201122121212210", "2022010111220100100010011122100122220121012120121100002211011021", "1020212200112100221120011211000102102001211121211102102202011111", "2122000222122211010200022101002102202110212210001210012022202012", "0122022200200001001020212012110000022022001210012120112101111201", "1220122201100021201201102011110201010012220210002000020102122020", "2021210112022002220111111012220120102021210022122200122002121010", "1002210221200000000110012010222020201201101020020002222222002101", "1120002220122021111121201001101221120120111121100200221020010111", "2221111222210021211010102222102222110010212122210022101211212112", "2102210120011020012000212100110112000012201012212102020120211121", "1012212101011102121021202200212011022110111200100110011222001121", "2221012221121000002102012101210220001122010111020220002221110000", "0011001200211211211001011002010012122101021000222201022122221121", "2011222021121120222211022122212020001210021112020002101121211121", "2010221102021100122002011111122122011122111212201210000120012221", "1221121011021002210102002020211122010111100022202000201220220220", "2222100211120120021220222120112021220111022010101000200022000102", "2101001210100211110102211000102101100220121112011202010222002011", "1201210021011110021120012101011010021201202212222222222201211102", "2222020210121100101000221121221120210122110221222002200210112220", "1111020221112112211022202202022011222110211120002210012002010101", "0201011021211012012001001100012112001002001020122010122211200222"]); y:=CambridgeMatrix(1,F,64,[ "0011101200121212111211011112211002120222212211202211002121001212", "1110121011101021122121112220021221211122022212012021121010112122", "0221111002202112120212022222211201101102012212102102210212000122", "1220012101001021101110121022212000211112001120112110212120121210", "1112211201211100100220200122221221200020021110221102212020101012", "2121121110202112100221212100200022100022112111222011200000002202", "2111221112012022110221011020212221002111210200200021211020002001", "1010102002000000122012112102201111002022220010021222111122212211", "0101121012102021211121021112001110122121110121002122021120122100", "1211212120002202222011022211111212212201222212102211121210021202", "2021110022202100011112221012201001102201002112121121100200100021", "2112020010211200202102100202110212220100222201110022102020212220", "1221112120222220211002201121200210221012011122102200020022221111", "2102021210112212111012211000121022122110200211010221010100100022", "1001000212122221201000111001122220012202222112101211100201121211", "0222021012201222010111222212110110122200200222100201211001022101", "2022101101000002021210002110111200101111002122121012101100021111", "1111121201100112222220122222111222011221211101120220212110120101", "0100020021122102020120012211212211202100020221110010001202221002", "1122212212100222111110220110011010010211020121002100220001221020", "0002120001100121211000110100102020011021011110111102101120021212", "2112100112101201011200122011010022210020110110021011001221101010", "0211022121110100201022021110020000222211210121200020200000001001", "0102120022112221212011210122210211211210211012001011010000221212", "2010202202010112122200022101011101221012122121011001212200012221", "2200200022000022102221022222010120121221200202212101200112202022", "0202211001211012111100201020222100222120221201011222001122222101", "0010200001121201111200102210120121121001100111211121112021212000", "1212010221202002112121022220102200200012011012212002210020201100", "2020111022020002112120200120201211001011200022102002011002102201", "0121212101012021022112212000011220201120221220202010200012122011", "2122110000110020221100200010211010212110200210100112011102101202", "0112100021022102201010221222021011020001110101122010202201020111", "2020010222122212000221101000222110120112201100210211112220020210", "0012021002200020222001222011121110000122212200212001120100120101", "0002202101022020001101122002021222012222020222220212110102011221", "0222122112101011110002222022021110112221210200001221112220001212", "1200010010221001101222212011101001101201002221002002212100222112", "1002110001220101020120122000002011100100201102001011020001220200", "0012011211221121020011021220112012201211220111011220202212021212", "1101020121010201210122000100102120201110221222221201021120200122", "1001221220220122101111111102111101222201210120100022220012211011", "2001012222021210201122112201021212210201100020212001101222011202", "2201221201002120000000021201220222202112111102202212012021010110", "0011221122000012022102000202002211021210020221020122021112101220", "2010010200110020011122011001021000220020200111101202000121102020", "1200212000002101000120201222010212111112222111001120022200010212", "2200122101122200021220021210210222212110002211022222021012100210", "0200022110001022120112110000010211201112021010120212212001222202", "0102000120210002220201222200011222112212221201222221102000000012", "2112221200011220110112022222102021020000002221001221002220220001", "0222020200021211121022212211021220011212100220021201200222202212", "1211110020200212120200122110111021000021012001112000022122100102", "1102000220112220101112212121110202000110111101212102122101220121", "2211012201101210220012112200111001112200010020001001201210222000", "1011211220111202000221212220020022220000111100120012010212022022", "0021021002200201001012111201100020001220221221021120212021000220", "0101202212100202201112202010210010212202211000212101101122020122", "2212221200000122000000021102001210112100021212100011000021001202", "2120100110120112220200201120100212001210221102110221010211212201", "0101101222122202001122022210020002122220110112020102222112101121", "2000220122200101122110222002101001120110211211221012112110022221", "0020010110021101200110220010201211102022021021202220222112122222", "2210020112101022002210120100112012000020201021202020020210021111"]); G:=MatrixGroup<64,F|x,y>; print "Group G is G2(4).2 < GL(64,GF(3))";