/* www-ATLAS of Group Representations. 2.G2(4) represented as 12 x 12 matrices over GF(13). */ F:=GF(13); x:=CambridgeMatrix(3,F,12,\[ 0,12,0,0,0,0,0,0,0,0,0,0, 12,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,12,0,0,0,0,0,0,0,0, 0,0,12,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,12,0,0,0,0,0, 0,0,0,0,0,0,0,12,0,0,0,0, 0,0,0,0,12,0,0,0,0,0,0,0, 0,0,0,0,0,12,0,0,0,0,0,0, 11,11,1,1,8,7,8,7,1,0,0,0, 7,7,10,10,7,11,7,11,0,1,0,0, 11,11,2,2,1,12,1,12,0,0,1,0, 11,11,12,12,6,4,6,4,0,0,0,1]); y:=CambridgeMatrix(3,F,12,\[ 0,12,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0,0, 1,12,12,0,12,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0,0,0,0,1, 6,0,7,4,4,7,1,8,8,8,10,0, 0,0,11,9,2,1,3,12,7,7,4,12, 0,0,0,12,0,12,0,0,12,0,0,12]); G:=MatrixGroup<12,F|x,y>; print "Group G is 2.G2(4) < GL(12,GF(13))";