# F:=RationalField(); local result, l; result:= rec(); result.comment:= "G2(3) as 14 x 14 matrices over Z.\n\ "; result.symmetricforms:= []; result.antisymmetricforms:= []; result.hermitianforms:= []; result.centralizeralgebra:= []; result.generators:= List( [ [ -1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,1,0,0,-1,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0,0,0, 0,0,-1,0,1,0,0,0,0,0,0,0,-1,0, 0,-1,0,1,0,0,0,0,0,0,0,0,1,1, 0,0,0,0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,-1,0, 0,0,0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,-1,0,-1,1,0, 0,0,0,0,0,0,0,0,0,-1,0,0,0,0, 0,0,1,0,0,-1,0,1,0,1,0,0,0,0] ,[ 0,1,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0,0,0,0,0, 0,0,-1,0,1,0,0,0,0,0,0,0,-1,0, 1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,-1,0,0,0,0,0,0,0,0,0,0,1, 1,0,0,0,0,-1,0,1,1,0,-1,-1,0,0, 0,0,0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,-1,1,0, 0,0,0,0,0,0,0,0,0,-1,0,0,0,0, 0,0,0,0,0,0,-1,0,0,0,0,0,0,0, 0,1,0,0,0,1,0,-1,0,-1,0,0,0,-1, 0,0,0,0,0,0,0,1,0,0,0,-1,1,1, 0,0,0,0,0,0,0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,0,0,0,0,0,-1,-1] ], l -> List( [ 0 .. 13 ], i -> l{ [ i*14+1 .. (i+1)*14 ] } ) ); l:= [ 4,1,-1,1,1,-1,0,-1,-1,2,1,1,2,-1, 1,4,1,1,-1,0,-2,0,0,1,2,0,-1,2, -1,1,4,0,1,1,-1,-2,2,1,0,-2,-1,2, 1,1,0,4,0,1,-1,1,-2,0,0,-1,-1,-1, 1,-1,1,0,4,0,0,-2,1,1,-2,1,2,-1, -1,0,1,1,0,4,1,1,0,1,-2,0,0,0, 0,-2,-1,-1,0,1,4,0,-1,1,-1,0,2,-2, -1,0,-2,1,-2,1,0,4,-2,-2,0,1,-1,-1, -1,0,2,-2,1,0,-1,-2,4,1,0,0,0,2, 2,1,1,0,1,1,1,-2,1,4,0,0,2,0, 1,2,0,0,-2,-2,-1,0,0,0,4,-1,-1,1, 1,0,-2,-1,1,0,0,1,0,0,-1,4,2,-1, 2,-1,-1,-1,2,0,2,-1,0,2,-1,2,4,-2, -1,2,2,-1,-1,0,-2,-1,2,0,1,-1,-2,4]; Add( result.symmetricforms, List( [ 0 .. 13 ], i -> l{ [ i*14+1 .. (i+1)*14 ] } ) ); Add( result.centralizeralgebra, IdentityMat(14) ); return result;