/* www-ATLAS of Group Representations. U6(2):2 represented as 22 x 22 matrices over GF(5). */ F:=GF(5); x:=CambridgeMatrix(1,F,22,[ "0100000000000000000000", "1000000000000000000000", "0000100000000000000000", "0000001000000000000000", "0010000000000000000000", "0000000001000000000000", "0001000000000000000000", "0000000000001000000000", "0000000000000010000000", "0000010000000000000000", "0000000000000000100000", "3224331032210020300000", "0000000100000000000000", "4143132442101110400000", "0000000010000000000000", "1434231242303011200000", "0000000000100000000000", "3203012104404000110000", "1411434432001020001000", "0044141001400000100100", "3244141411201040300010", "0000010344002010000001"]); y:=CambridgeMatrix(1,F,22,[ "0010000000000000000000", "0001000000000000000000", "0000010000000000000000", "0000000100000000000000", "0000000010000000000000", "0000000000100000000000", "0000000000010000000000", "0000000000000100000000", "0400440040000000000000", "0000000000000001000000", "0000000000000000010000", "0000000000000000001000", "0000000000000000000100", "2423020100000300040000", "0000000000000000000010", "0133031111040200422430", "0000000000000000000001", "3324010100100200040000", "1133242103323111210002", "4111444044230421011024", "1333400444241311032114", "1234304240102443334122"]); G:=MatrixGroup<22,F|x,y>; print "Group G is U6(2):2 < GL(22,GF(5))";