/* www-ATLAS of Group Representations. U6(2):S3 represented as 22 x 22 matrices over GF(7). */ F:=GF(7); x:=CambridgeMatrix(1,F,22,[ "0100000000000000000000", "1000000000000000000000", "0001000000000000000000", "0010000000000000000000", "0000001000000000000000", "0000000010000000000000", "0000100000000000000000", "0000000000010000000000", "0000010000000000000000", "3443601201050000000000", "0000000000000010000000", "0000000100000000000000", "0000000000000000010000", "4334245230353140040000", "0000000000100000000000", "1643661610511021060000", "4361611260253050140000", "0000000000001000000000", "6161324150361040061000", "0052245030404030030100", "0016403600012000050010", "4300050120266050010001"]); y:=CambridgeMatrix(1,F,22,[ "0010000000000000000000", "0660000000000000000000", "0000100000000000000000", "0000010000000000000000", "0000000100000000000000", "0000000001000000000000", "0000000000100000000000", "1640400200000000000000", "0000000000001000000000", "0000000000000100000000", "0000000000000001000000", "0000000000000000100000", "0000000000000000001000", "0000000000000000000100", "0000000000000000000010", "0000000000000000000001", "5505533430645244151533", "1046002514110153325615", "1222431655222334526141", "0001060001000600000100", "0553462354423126520432", "1063225004552142255336"]); G:=MatrixGroup<22,F|x,y>; print "Group G is U6(2):S3 < GL(22,GF(7))";