/* U5(2):2 presented on its standard generators. */ G:=Group; H:=sub; // H = C_G(y^2) [order 9216, index 2970]. K1:=sub; // K1 = C11. M1:=sub; M2:=sub; M3:=sub; M4:=sub; M5:=sub; M6:=sub; M7:=sub; // Maximal subgroups of G: U5(2), 2^{1+6}.3^{1+2}.2S4, (3 x U4(2)):2, // 2^{4+4}:(3xA5):2, 3^4:(S5x2), S3 x 3^{1+2}:2S4, L2(11):2. /* Demonstrations of correctness: 1st one: Relations x^2 = y^4 = (x*y^2)^6 = 1 = [y^2,x*y*x*y*x]^3 imply that H centralises y^2. Relations x^2 = y^4 = (x*y)^11 = [x,y]^9 = 1 show that G/G' = 2 (at most) and that G' is perfect, and that G' is generated by the conjugates of y^2. Coset enumeration over H gives the expected index of 2970. Since U5(2) has trivial Schur multiplier, we conclude that G = U5(2):2. 2nd one: Coset enumeration over K1 = C11 (index is 2488320). The following enumerations should work. Index(G,H:Print:=2,Hard:=true,CosetLimit:=10000); Index(G,K1:Print:=2,Hard:=true,Grain:=10^6,CosetLimit:=3*10^6); Index(G,M1:Print:=2,Hard:=true,CosetLimit:=100); Index(G,M2:Print:=2,Hard:=true,CosetLimit:=10000); Index(G,M3:Print:=2,Hard:=true,CosetLimit:=10000); Index(G,M4:Print:=2,Hard:=true,CosetLimit:=10000); Index(G,M5:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=10^6); Index(G,M6:Print:=2,Hard:=true,CosetLimit:=10000); Index(G,M7:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=10^6); */