/* A presentation for U5(2) in terms of its standard generators. SGens for U5(2) are x in 2A, y in 5A s.t. xy has order 11. */ G:=Group; H:=sub; K1:=sub; K2:=sub; K3:=sub; // H = C_G(x). // K1 = 11. // K2 = = 3^{1+2}:2. // K3 = 2^{1+6}:3^{1+2}:2, normal in 2^{1+6}:3^{1+2}:2A4. M1:=sub; // Same as H. M2:=sub; M2a:=sub; // Conjugate to M2. M3:=sub; M4:=sub; M5:=sub; M6:=sub; // Maximal subgroups. H2:=sub; // U4(2). /* Demonstrations of correctness: Proof 1: Coset enumeration over K1 = = C11 (index 1244160). Proof 2: From relations 1, 4, 5 and 6, we see that a = x, b = x^y and c = y*x*y^-1 satisfy the presentation: , showing that K2 = has order (at most) 54. To see that (abac)^3=1, express Relation 6 in the form (x*y^-1*x*y*x*y*x*y^-1)^3 = 1. The enumerate the cosets of K2 (index 253440). Proof 2b?: Work out what K3 is from the relations [1, 4, 5, 6 and 7]. (I haven't tried this, so I don't know if this can made to work.) Coset enumeration over K3 is very easy, and the index is 1980. Proof 3: Relations x^2 = y^5 = (x*y)^11 = 1 show that G is perfect and generated by conjugates of x. From the relations x^2 = [x,y]^3 = [x,y^2]^3 = 1 we see that H centralises x. Coset enumeration shows that H has index 165 in G, the same as we expect in the image U5(2). Since the Schur multiplier of U5(2) is trivial, we have G = U5(2). The following enumerations should work. Index(G,H:Print:=2,Hard:=true,CosetLimit:=10000); Index(G,K3:Print:=2,Hard:=true,CosetLimit:=10000); Index(G,K2:Print:=2,Hard:=true,Grain:=10^6,CosetLimit:=2*10^6); Index(G,K1:Print:=2,Hard:=true,Grain:=10^6,CosetLimit:=11*10^6); // indexes 165, 1980, 253440, 1244160. Index(G,M1:Print:=2,Hard:=true,CosetLimit:=10000); Index(G,M2:Print:=2,Hard:=true,CosetLimit:=10000); Index(G,M2a:Print:=2,Hard:=true,Grain:=10^6,CosetLimit:=2*10^6); Index(G,M3:Print:=2,Hard:=true,Grain:=10^6,CosetLimit:=2*10^6); Index(G,M4:Print:=2,Hard:=true,CosetLimit:=10000); Index(G,M5:Print:=2,Hard:=true,CosetLimit:=10000); Index(G,M6:Print:=2,Hard:=true,Grain:=10^5,CosetLimit:=10^6); Index(G,H2:Print:=2,Hard:=true,CosetLimit:=100000); */