/* U5(2) as 10 x 10 matrices over Z[w]. Absolutely irreducible representation with character values in Q. Schur index 2. SEED: Nonzero v such that v.x = -v and v.y*x*y^4*x*y^2 = -w*v, where = 2^{1+6}:3^{1+2}:6. Stab(v) = 2^{1+6}:3^{1+2} is normal in a copy of 2^{1+6}:3^{1+2}:2A4. v has 6 x 660 = 3960 images under G; has 660 images under G. BASIS: All in v^G. Possible matrix entries (for any g\in G) are in {0,±1,±w,±w^2,±2,±2*w,±2*w^2} (13 such). Norms of entries are in {0,1,4} (3 such). Average number of nonzero entries for any element of the group: 58 + 7/11 (about 58.636; 58.636%). Entry Norm Av/Mat %Av/Mat 0 0 41.364 [41 + 4/11] 41.364 [41 + 4/11] nonzero -- 58.636 [58 + 7/11] 58.636 [58 + 7/11] Each of ±1,±w,±w^2 1 9.697 [ 9 +23/33] 9.697 [ 9 +23/33] Each of ±2,±2*w,±2*w^2 4 0.076 [ 5/66] 0.076 [ 5/66] norm 1 1 58.182 [58 + 2/11] 58.182 [58 + 2/11] norm 4 4 0.455 [ 5/11] 0.455 [ 5/11] */ F:=CyclotomicField(3); W:=w^2;i3:=2*w+1; G:=MatrixGroup<10,F|[ -1,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0, 0,0,-1,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0,0, 0,W,0,W,-1,w,0,-1,0,0, 0,0,0,0,0,0,0,-W,0,0, 0,w,0,w,0,0,-1,0,0,0, 0,0,0,0,0,-w,0,0,0,0, 0,0,0,0,0,0,0,0,-1,0, 0,0,0,0,0,-1,0,W,0,-1] ,[ 0,1,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,1,0,0,0,0, 0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0, 0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,1,0,0] >; a:=x;b:=y; xc:=GL(10,F)![Conjugate(u,2):u in Eltseq(x)]; yc:=GL(10,F)![Conjugate(u,2):u in Eltseq(y)]; // Forms: B1 (Antisymmetric), B2 (Hermitian). // B1 (Antisymmetric form): Determinant 1. B1:=MatrixAlgebra(F,10)![ 0,0,0,0,0,0,0,0,w,W, 0,0,0,0,0,0,0,W,0,w, 0,0,0,0,0,0,w,0,W,0, 0,0,0,0,-W,-w,0,0,0,0, 0,0,0,W,0,0,0,w,0,0, 0,0,0,w,0,0,W,0,0,0, 0,0,-w,0,0,-W,0,0,0,0, 0,-W,0,0,-w,0,0,0,0,0, -w,0,-W,0,0,0,0,0,0,0, -W,-w,0,0,0,0,0,0,0,0]; // B2 (Hermitian form): Determinant 7776 = 6^5. B2:=MatrixAlgebra(F,10)![ 6,0,0,0,-3*W,-3*w,3*W,-3,-i3*W,-i3, 0,6,-3*w,-3,0,-3*W,0,-i3,3*W,-i3*W, 0,-3*W,6,3*W,-3*w,0,-i3*W,0,-i3,-3, 0,-3,3*w,6,i3,i3*w,3*W,3*w,-3*W,-3*w, -3*w,0,-3*W,-i3,6,0,-3,-i3*W,0,3*W, -3*W,-3*w,0,-i3*W,0,6,-i3,3*W,-3,0, 3*w,0,i3*w,3*w,-3,i3,6,-3*w,3*W,-3*W, -3,i3,0,3*W,i3*w,3*w,-3*W,6,-3*w,3*w, i3*w,3*w,i3,-3*w,0,-3,3*w,-3*W,6,3*W, i3,i3*w,-3,-3*W,3*w,0,-3*w,3*W,3*w,6]; // B2a = -B2/i3: Determinant -32. B2a:=MatrixAlgebra(F,10)![ 2*i3,0,0,0,-i3*W,-i3*w,i3*W,-i3,W,1, 0,2*i3,-i3*w,-i3,0,-i3*W,0,1,i3*W,W, 0,-i3*W,2*i3,i3*W,-i3*w,0,W,0,1,-i3, 0,-i3,i3*w,2*i3,-1,-w,i3*W,i3*w,-i3*W,-i3*w, -i3*w,0,-i3*W,1,2*i3,0,-i3,W,0,i3*W, -i3*W,-i3*w,0,W,0,2*i3,1,i3*W,-i3,0, i3*w,0,-w,i3*w,-i3,-1,2*i3,-i3*w,i3*W,-i3*W, -i3,-1,0,i3*W,-w,i3*w,-i3*W,2*i3,-i3*w,i3*w, -w,i3*w,-1,-i3*w,0,-i3,i3*w,-i3*W,2*i3,i3*W, -1,-w,-i3,-i3*W,i3*w,0,-i3*w,i3*W,i3*w,2*i3]; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,10)!1;