/* U5(2) as 10 x 10 matrices over Z[i]. Absolutely irreducible representation with character values in Q. Schur index 2. SEED: Nonzero v such that v.x = v and v.y^2*x*y^3*x*y^2 = i*v, where = 2 x 12. Stab() = = 2^{1+6}:3^{1+2}:4, where v*(y*x*y^4*x*y)^3 = -v. Stab(v) = 2^{1+6}:3^{1+2} is normal in = 2^{1+6}:3^{1+2}:2A4. v has 4 x 990 = 3960 images under G; has 990 images under G. BASIS: All in v^G. Possible matrix entries (for any g\in G) are in {0,±1,±i,±1±i,±2,±2*i,±2±2*i} (17 such). Norms of entries are in {0,1,2,4,8} (5 such). Average number of nonzero entries for any element of the group: 65 + 5/33 (about 65.152; 65.152%). Entry Norm Av/Mat %Av/Mat 0 0 34.848 [34 + 28/33] 34.848 [34 + 28/33] nonzero -- 65.152 [65 + 5/33] 65.152 [65 + 5/33] Each of ±1,±i 1 12.929 [12 + 92/99] 12.929 [12 + 92/99] Each of ±1±i 2 3.232 [ 3 + 23/99] 3.232 [ 3 + 23/99] Each of ±2,±2*i 4 0.101 [ 10/99] 0.101 [ 10/99] Each of ±2±2*i 8 0.025 [ 5/198] 0.025 [ 5/198] norm 1 1 51.717 [51 + 71/99] 51.717 [51 + 71/99] norm 2 2 12.929 [12 + 92/99] 12.929 [12 + 92/99] norm 4 4 0.404 [ 40/99] 0.404 [ 40/99] norm 8 8 0.101 [ 10/99] 0.101 [ 10/99] */ F:=QuadraticField(-1); G:=MatrixGroup<10,F|[ 1,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0,0, -i,0,0,-1,0,0,0,0,0,0, -1+i,-1,-1,0,-1,0,0,0,0,0, i,0,0,0,0,-1,0,0,0,0, 1,i,i,0,0,0,-1,0,0,0, -1,-1,-1,0,0,0,0,-1,0,0, -i,1-i,1-i,0,0,0,0,0,-1,0, -1,0,0,0,0,0,0,0,0,-1] ,[ 0,1,0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,1,0, 1,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1, 0,0,1,0,0,0,0,0,0,0] >; a:=x;b:=y; xc:=GL(10,F)![Conjugate(u):u in Eltseq(x)]; yc:=GL(10,F)![Conjugate(u):u in Eltseq(y)]; // Forms: B1 (Antisymmetric), B2 (Hermitian). // B1 (Antisymmetric form): Determinant 1. B1:=MatrixAlgebra(F,10)![ 0,1,1,0,-1,0,i,-1,1-i,0, -1,0,0,1,1,0,-1,0,i,1-i, -1,0,0,-1+i,-i,-i,0,1,0,i, 0,-1,1-i,0,0,1,1,0,-1,i, 1,-1,i,0,0,-1+i,-i,-i,0,0, 0,0,i,-1,1-i,0,0,1,1,-1, -i,1,0,-1,i,0,0,-1+i,-i,0, 1,0,-1,0,i,-1,1-i,0,0,1, -1+i,-i,0,1,0,-1,i,0,0,-i, 0,-1+i,-i,-i,0,1,0,-1,i,0]; // B2 (Hermitian form): Determinant 32 = 2^5. B2:=MatrixAlgebra(F,10)![ 4,-1-i,-1-i,2*i,-1-i,-2*i,1+i,-1+i,0,-2, -1+i,4,-2,-1-i,-1-i,2*i,-1-i,-2*i,1+i,0, -1+i,-2,4,0,1+i,1-i,0,-1+i,0,1-i, -2*i,-1+i,0,4,-2,-1-i,-1-i,2*i,-1-i,1+i, -1+i,-1+i,1-i,-2,4,0,1+i,1-i,0,0, 2*i,-2*i,1+i,-1+i,0,4,-2,-1-i,-1-i,-1-i, 1-i,-1+i,0,-1+i,1-i,-2,4,0,1+i,0, -1-i,2*i,-1-i,-2*i,1+i,-1+i,0,4,-2,-1-i, 0,1-i,0,-1+i,0,-1+i,1-i,-2,4,1+i, -2,0,1+i,1-i,0,-1+i,0,-1+i,1-i,4]; // B2a = B2/(1-i): Determinant i. B2a:=MatrixAlgebra(F,10)![ 2*(1+i),-i,-i,-1+i,-i,1-i,i,-1,0,-1-i, -1,2*(1+i),-1-i,-i,-i,-1+i,-i,1-i,i,0, -1,-1-i,2*(1+i),0,i,1,0,-1,0,1, 1-i,-1,0,2*(1+i),-1-i,-i,-i,-1+i,-i,i, -1,-1,1,-1-i,2*(1+i),0,i,1,0,0, -1+i,1-i,i,-1,0,2*(1+i),-1-i,-i,-i,-i, 1,-1,0,-1,1,-1-i,2*(1+i),0,i,0, -i,-1+i,-i,1-i,i,-1,0,2*(1+i),-1-i,-i, 0,1,0,-1,0,-1,1,-1-i,2*(1+i),i, -1-i,0,i,1,0,-1,0,-1,1,2*(1+i)]; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,10)!1;