/* U4(2):2 as 6 x 6 matrices over Z. Representation 6^+. Schur index 1. SEED: Nonzero v fixed by x and negated by y*x*y^-2 where = S6 x 2. v has 2 x 36 = 72 images under G; has 36 images under G. BASIS: v, v*y, -v*y*x, v*y*x*y, v*y*x*y^2, v*y*x*y^3. (Note that -v*y*x = v*y^2.) Possible matrix entries are in {-1,0,1}. Average number of nonzero entries for any element of the group: 16 (exactly 16; about 44.444%). Entry Av/Mat %Av/Mat 0 20 55.556 [55+5/9] ±1 16 44.444 [44+4/9] 1 8 22.222 [22+2/9] -1 8 22.222 [22+2/9] LATTICE INFO: Name: E6. Minimum: 2. Kissing number: 72. Theta series: 1 + 72*q^2 + 270*q^4 + 720*q^6 + 936*q^8 + 2160*q^10 + O(q^12). p-MODULAR REDUCTIONS: p = 3: 1^+.5^+. other: absolutely irreducible. */ F:=Rationals(); Z:=Integers(); G:=MatrixGroup<6,F|\[ 1,0,0,0,0,0, 0,0,-1,0,0,0, 0,-1,0,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,-1,-1,0,0,1] ,\[ 0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,-1,0,0, 0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,-1,0,0] >; c:=x;d:=y; // Forms: B1 (Symmetric). // B1 (Symmetric form): Determinant 3; elem divs 1^5.3. B1:=MatrixAlgebra(F,6)!\[ 2,-1,1,1,0,0, -1,2,-1,-1,1,0, 1,-1,2,1,-1,1, 1,-1,1,2,-1,1, 0,1,-1,-1,2,-1, 0,0,1,1,-1,2]; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,6)!1; LA1:=LatticeWithGram(MatrixAlgebra(Z,6)!B1); LAD1:=LatticeWithGram(MatrixAlgebra(Z,6)!(3*B1^-1));