/* U4(2) as 6 x 6 matrices over Z. Representation 6. Schur index 1. SEED: Nonzero v fixed by = 2^4:A5. v has 1 x 27 = 27 images under G; has 27 images under G. BASIS: v, v*x, v*y, v*x*y, v*y^2, v*x*y*x. Possible matrix entries are in {-1,0,1}. Average number of nonzero entries for any element of the group: 16 (exactly 16; about 44.444%). Entry Av/Mat %Av/Mat 0 20 55.556 [55+5/9] ±1 16 44.444 [44+4/9] 1 8 22.222 [22+2/9] -1 8 22.222 [22+2/9] LATTICE INFO: Name: E6*. Minimum: 4. Kissing number: 54. Theta series: 1 + 54*q^4 + 72*q^6 + 432*q^10 + O(q^12). p-MODULAR REDUCTIONS: p = 3: 5.1. other: absolutely irreducible. */ F:=Rationals(); Z:=Integers(); G:=MatrixGroup<6,F|\[ 0,1,0,0,0,0, 1,0,0,0,0,0, 1,1,-1,0,0,0, 0,0,0,0,0,1, 0,0,0,1,-1,1, 0,0,0,1,0,0] ,\[ 0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0, -1,0,0,0,-1,0, -1,-1,0,0,0,0, 0,0,0,0,0,1] >; a:=x;b:=y; // Forms: B1 (Symmetric). // B1 (Symmetric form): Determinant 243 = 3^5; elem divs 1.3^5. B1:=MatrixAlgebra(F,6)!\[ 4,-2,1,-2,-2,1, -2,4,1,1,1,-2, 1,1,4,-2,1,1, -2,1,-2,4,1,-2, -2,1,1,1,4,1, 1,-2,1,-2,1,4]; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,6)!1; LA1:=LatticeWithGram(MatrixAlgebra(Z,6)!B1); LAD1:=LatticeWithGram(MatrixAlgebra(Z,6)!(3*B1^-1));