/* U4(2) as 5 x 5 matrices over Z[w]. Representation 5a. Absolutely irreducible representation. Schur Index 1. MONOMIAL GROUP: M := = 5. SEED: Nonzero v fixed by x. Stab_G() is = 2.(A4xA4).2 with v.y*x*y^-1*x*y = w*v and v.y^2*x*y^-2*x*y^2 = -w^2*v. v has 6 x 45 = 270 images under G; has 45 images under G. BASIS: v, v*y, v*y^2, v*y^3, v*y^4. Possible matrix entries are in {0,1,-1,w,-w,w^2,-w^2} (norms 0, 1 only). Average number of nonzero entries for any element of the group: 15 (exactly 60%). Entry Av/Mat %Av/Mat 0 10 40 nonzero 15 60 1 2.5 [2+1/2] 10 -1 2.5 [2+1/2] 10 w 2.5 [2+1/2] 10 -w 2.5 [2+1/2] 10 w^2 2.5 [2+1/2] 10 -w^2 2.5 [2+1/2] 10 p-MODULAR REDUCTIONS: p = 2: 1.4a (uniserial). other: absolutely irreducible. */ F:=CyclotomicField(3); G:=MatrixGroup<5,F|[ 1,0,0,0,0, -w,-1,0,0,0, w^2,0,-1,0,0, w,0,0,-1,0, -w^2,0,0,0,-1] ,\[ 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1, 1,0,0,0,0] >; a:=x;b:=y; xc:=GL(5,F)![Conjugate(u,2):u in Eltseq(x)]; yc:=GL(5,F)![Conjugate(u,2):u in Eltseq(y)]; // Forms: B1 (Hermitian). // B1 (Hermitian form): Determinant 2. B1:=MatrixAlgebra(F,5)![ 2,-w^2,w,w^2,-w, -w,2,-w^2,w,w^2, w^2,-w,2,-w^2,w, w,w^2,-w,2,-w^2, -w^2,w,w^2,-w,2]; // x*B1*Transpose(xc) eq B1; // y*B1*Transpose(yc) eq B1; // Centralising algebra: Scalars only. C1:=MatrixAlgebra(F,5)![ 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1];